Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted DNA methylation represses two enhancers of FLOWERING LOCUS T in Arabidopsis thaliana

Abstract

FLOWERING LOCUS T (FT) plays a major role in regulating the floral transition in response to an inductive long day photoperiod in Arabidopsis thaliana. Expression of FT in leaves is dependent on the distal transcriptional enhancer Block C, located 5-kilobases (kb) upstream of the transcriptional start site (TSS). We expressed an inverted repeat of Block C to induce local DNA methylation and heterochromatin formation, which lead to FT downregulation in an inductive photoperiod. Using targeted DNA methylation as a tool to uncover further regulatory regions at the FT locus, we identified Block E, located 1 kb downstream of the gene, as a novel enhancer of FT. As Block C, Block E is conserved across Brassicaceae and located in accessible chromatin. Block C and E act as additive transcriptional enhancers that, in combination with the proximal FT promoter, control expression of FT in response to photoperiod in the leaf phloem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Floral transition is delayed and FT expression downregulated in Block C IR-containing plants.
Fig. 2: DNA methylation is set at Block C in IR-containing plants.
Fig. 3: Block E is a novel regulatory element located downstream of FT.
Fig. 4: Block E drives GUS expression in long day conditions.

Similar content being viewed by others

Data availability

All data and materials generated in this study are available without restriction. Sequencing data for smRNA-seq are available in NCBI (BioProject PRJNA427142). Scripts and additional data are available on the GitHub repository https://github.com/johanzi/scripts_Zicola_2019.

References

  1. Adrian, J. et al. Cis-regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22, 1425–1440 (2010).

    Article  CAS  Google Scholar 

  2. Cao, S. et al. A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the FLOWERING LOCUS T promoter and regulates the timing of flowering in Arabidopsis. Plant Cell 26, 1009–1017 (2014).

    Article  CAS  Google Scholar 

  3. Gnesutta, N. et al. CONSTANS imparts DNA sequence-specificity to the histone-fold NF-YB/NF-YC dimer. Plant Cell 29, 1516–1532 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Suárez-López, P. et al. Constans mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1120 (2001).

    Article  Google Scholar 

  5. Ben-Naim, O. et al. The CCAAT binding factor can mediate interactions between constans-like proteins and DNA. Plant J. 46, 462–476 (2006).

    Article  CAS  Google Scholar 

  6. Wenkel, S. et al. Constans and the ccaat box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18, 2971–2984 (2006).

    Article  CAS  Google Scholar 

  7. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).

    Article  CAS  Google Scholar 

  8. Weber, B., Zicola, J., Oka, R. & Stam, M. Plant enhancers: a call for discovery. Trends. Plant. Sci. 21, 974–987 (2016).

    Article  CAS  Google Scholar 

  9. Liu, L. et al. Induced and natural variation of promoter length modulates the photoperiodic response of FLOWERING LOCUS T. Nat. Commun. 5, 4558 (2014).

    Article  CAS  Google Scholar 

  10. Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394 (2014).

    Article  CAS  Google Scholar 

  11. Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 19, 5194–5201 (2000).

    Article  CAS  Google Scholar 

  12. Deng, S. et al. Transcriptional silencing of Arabidopsis endogenes by single-stranded RNAs targeting the promoter region. Plant Cell Physiol. 55, 823–833 (2014).

    Article  CAS  Google Scholar 

  13. Deng S. & Chua, N.-H. Inverted-repeat RNAs targeting FT intronic regions promote FT expression in Arabidopsis. Plant Cell Physiol. 56, 1667–1678 (2015).

    Article  CAS  Google Scholar 

  14. Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J. 21, 4671–4679 (2002).

    Article  CAS  Google Scholar 

  15. Melnyk, C. W., Molnar, A., Bassett, A. & Baulcombe, D. C. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr. Biol. 21, 1678–1683 (2011).

    Article  CAS  Google Scholar 

  16. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    Article  CAS  Google Scholar 

  17. Du, J. et al. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Mol. Cell 55, 495–504 (2014).

    Article  CAS  Google Scholar 

  18. Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).

    Article  CAS  Google Scholar 

  19. Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

    Article  CAS  Google Scholar 

  20. Zhang, W., Zhang, T., Wu, Y. & Jiang, J. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24, 2719–2731 (2012).

    Article  CAS  Google Scholar 

  21. Pedmale, U. V. et al. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164, 233–245 (2016).

    Article  CAS  Google Scholar 

  22. Vaistij, F. E., Jones, L. & Baulcombe, D. C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14, 857–867 (2002).

    Article  CAS  Google Scholar 

  23. Eamens, A., Vaistij, F. E. & Jones, L. Nrpd1a and nrpd1b are required to maintain post-transcriptional RNA silencing and RNA-directed DNA methylation in Arabidopsis. Plant J. 55, 596–606 (2008).

    Article  CAS  Google Scholar 

  24. Kanno, T. et al. A structural-maintenance-of-chromosomes hinge domain–containing protein is required for RNA-directed DNA methylation. Nat. Genet. 40, 670–675 (2008).

    Article  CAS  Google Scholar 

  25. Daxinger, L. et al. A stepwise pathway for biogenesis of 24‐nt secondary siRNAs and spreading of DNA methylation. EMBO J. 28, 48–57 (2009).

    Article  CAS  Google Scholar 

  26. Farrona, S. et al. Tissue-specific expression of FLOWERING LOCUS T in Arabidopsis is maintained independently of polycomb group protein repression. Plant Cell 23, 3204–3214 (2011).

    Article  CAS  Google Scholar 

  27. Vaughn, M. W. et al. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5, e174 (2007).

    Article  Google Scholar 

  28. Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249 (2011).

    Article  CAS  Google Scholar 

  29. Mathieu, J., Yant, L. J., Mürdter, F., Küttner, F. & Schmid, M. Repression of flowering by the miR172 Target SMZ. PLoS Biol. 7, e1000148 (2009).

    Article  Google Scholar 

  30. Takada, S. & Goto, K. Terminal flower2, an Arabidopsis homolog of heterochromatin protein1, counteracts the activation of FLOWERING LOCUS T by constans in the vascular tissues of leaves to regulate flowering time. Plant Cell 15, 2856–2865 (2003).

    Article  CAS  Google Scholar 

  31. Barolo, S. Shadow enhancers: Frequently asked questions about distributed cis-regulatory information and enhancer redundancy. BioEssays News Rev. Mol. Cell. Dev. Biol. 34, 135–141 (2012).

    Article  CAS  Google Scholar 

  32. Lam, D. D. et al. Partially redundant enhancers cooperatively maintain mammalian pomc expression above a critical functional threshold. PLoS Genet. 11, e1004935 (2015).

    Article  Google Scholar 

  33. Ruiz-Narváez, E. A. Redundant enhancers and causal variants in the TCF7L2 gene. Eur. J. Hum. Genet. 22, 1243–1246 (2014).

    Article  Google Scholar 

  34. Hu, G., Codina, M. & Fisher, S. Multiple enhancers associated with ACAN suggest highly redundant transcriptional regulation in cartilage. Matrix Biol. J. Int. Soc. Matrix Biol. 31, 328–337 (2012).

    Article  CAS  Google Scholar 

  35. Degenhardt, K. R. et al. Distinct enhancers at the Pax3 locus can function redundantly to regulate neural tube and neural crest expression. Dev. Biol. 339, 519–527 (2010).

    Article  CAS  Google Scholar 

  36. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000).

    Article  CAS  Google Scholar 

  37. Kovalchuk, I. & Zemp, F. J. Plant Epigenetics: Methods and Protocols (Humana Press, New York, 2010).

  38. Gruntman, E. et al. Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinformatics 9, 371 (2008).

    Article  Google Scholar 

  39. Hetzl, J., Foerster, A. M., Raidl, G. & Scheid, O. M. CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J. 51, 526–536 (2007).

    Article  CAS  Google Scholar 

  40. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  41. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinforma. Oxf. Engl. 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  42. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014); http://www.R-project.org/

  43. Reimer, J. J. & Turck, F. in Plant Epigenetics 631 (eds Kovalchuk, I. & Zemp, F. J.) 139–160 (Humana Press, New York, 2010).

  44. Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. Vista: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Marie Curie ITN grant (no. GA-316965), the Deutsche Forschungsgemeinschaft (no. DFG TU-126/6) and core funding of the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

F.T., J.Z. and L.L. designed the experiments. J.Z., P.T. and L.L. performed the experiments. J.Z. and F.T. wrote the manuscript. F.T. obtained the funding.

Corresponding author

Correspondence to Franziska Turck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Sequences, Supplementary Scripts and Supplementary Data.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zicola, J., Liu, L., Tänzler, P. et al. Targeted DNA methylation represses two enhancers of FLOWERING LOCUS T in Arabidopsis thaliana. Nat. Plants 5, 300–307 (2019). https://doi.org/10.1038/s41477-019-0375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0375-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing