Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-efficiency generation of fertile transplastomic Arabidopsis plants

Abstract

The development of technologies for the stable genetic transformation of plastid (chloroplast) genomes has been a boon to both basic and applied research. However, extension of the transplastomic technology to major crops and model plants has proven extremely challenging, and the species range of plastid transformation is still very much limited in that most species currently remain recalcitrant to plastid genome engineering. Here, we report an efficient plastid transformation technology for the model plant Arabidopsis thaliana that relies on root-derived microcalli as a source tissue for biolistic transformation. The method produces fertile transplastomic plants at high frequency when combined with a clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9)-generated knockout allele of a nuclear locus that enhances sensitivity to the selection agent used for isolation of transplastomic events. Our work makes the model organism of plant biology amenable to routine engineering of the plastid genome, facilitates the combination of plastid engineering with the power of Arabidopsis nuclear genetics, and informs the future development of plastid transformation protocols for other recalcitrant species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biolistic nuclear and plastid transformation of A. thaliana.
Fig. 2: Construction of plastid transformation vectors and selection of transplastomic Arabidopsis plants.
Fig. 3: Homoplasmy of transplastomic lines obtained with vectors pCH8, pJF1153 and pJF1151, and demonstration of maternal transgene inheritance.
Fig. 4: Expression of the YFP reporter in transplastomic At-Δa-JF1151 plants.
Fig. 5: Immunoblot analysis of YFP accumulation in transplastomic Arabidopsis plants.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files. Annotated sequences of plastid transformation vectors pCH8, pJF1151 and pJF1153 have been deposited in GenBank (accession numbers MH590891, MH590893 and MH590894). Nature Plants thanks Francis Quétier, Spencer M. Whitney and other anonymous reviewers for their contributions to the peer review of this work.

References

  1. Boynton, J. E. et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240, 1534–1538 (1988).

    Article  CAS  Google Scholar 

  2. Svab, Z., Hajdukiewicz, P. & Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl Acad. Sci. USA 87, 8526–8530 (1990).

    Article  CAS  Google Scholar 

  3. Maliga, P. Plastid transformation in higher plants. Annu. Rev. Plant. Biol. 55, 289–313 (2004).

    Article  CAS  Google Scholar 

  4. Maliga, P. & Bock, R. Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol. 155, 1501–1510 (2011).

    Article  CAS  Google Scholar 

  5. Bock, R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu. Rev. Plant Biol. 66, 211–241 (2015).

    Article  CAS  Google Scholar 

  6. Fuentes, P., Armarego-Marriott, T. & Bock, R. Plastid transformation and its application in metabolic engineering. Curr. Opin. Biotechnol. 49, 10–15 (2018).

    Article  CAS  Google Scholar 

  7. Takahashi, Y., Goldschmidt-Clermont, M., Soen, S.-Y., Franzen, L. G. & Rochaix, J.-D. Direct chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. EMBO J. 10, 2033–2040 (1991).

    Article  CAS  Google Scholar 

  8. Hager, M., Biehler, K., Illerhaus, J., Ruf, S. & Bock, R. Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b 6 f complex. EMBO J. 18, 5834–5842 (1999).

    Article  CAS  Google Scholar 

  9. Huang, C. Y., Ayliffe, M. A. & Timmis, J. N. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422, 72–76 (2003).

    Article  CAS  Google Scholar 

  10. Stegemann, S. & Bock, R. Exchange of genetic material between cells in plant tissue grafts. Science 324, 649–651 (2009).

    Article  CAS  Google Scholar 

  11. Bock, R. Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer. Annu. Rev. Genet. 51, 1–22 (2017).

    Article  CAS  Google Scholar 

  12. Lu, Y., Rijzaani, H., Karcher, D., Ruf, S. & Bock, R. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc. Natl Acad. Sci. USA 110, E623–E632 (2013).

    Article  Google Scholar 

  13. Tregoning, J. S. et al. Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res. 31, 1174–1179 (2003).

    Article  CAS  Google Scholar 

  14. Bock, R. & Warzecha, H. Solar-powered factories for new vaccines and antibiotics. Trends Biotechnol. 28, 246–252 (2010).

    Article  CAS  Google Scholar 

  15. McBride, K. E. et al. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology 13, 362–365 (1995).

    CAS  PubMed  Google Scholar 

  16. Zhang, J. et al. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347, 991–994 (2015).

    Article  CAS  Google Scholar 

  17. Bock, R. Genetic engineering of the chloroplast: novel tools and new applications. Curr. Opin. Biotechnol. 26, 7–13 (2014).

    Article  CAS  Google Scholar 

  18. Ruf, S., Hermann, M., Berger, I. J., Carrer, H. & Bock, R. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat. Biotechnol. 19, 870–875 (2001).

    Article  CAS  Google Scholar 

  19. Sidorov, V. A. et al. Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J. 19, 209–216 (1999).

    Article  CAS  Google Scholar 

  20. Kanamoto, H. et al. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res. 15, 205–217 (2006).

    Article  CAS  Google Scholar 

  21. Okumura, S. et al. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res. 15, 637–646 (2006).

    Article  CAS  Google Scholar 

  22. Sikdar, S. R., Serino, G., Chaudhuri, S. & Maliga, P. Plastid transformation in Arabidopsis thaliana. Plant Cell Rep. 18, 20–24 (1998).

    Article  CAS  Google Scholar 

  23. Yu, Q., Lutz, K. A. & Maliga, P. Efficient plastid transformation in Arabidopsis. Plant Physiol. 175, 186–193 (2017).

    Article  CAS  Google Scholar 

  24. Hibberd, J. M. A major advance in plastid transformation. Plant Physiol. 175, 5 (2017).

    Article  CAS  Google Scholar 

  25. Preuten, T. et al. Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J. 64, 948–959 (2010).

    Article  CAS  Google Scholar 

  26. Parker, N., Wang, Y. & Meinke, D. Natural variation in sensitivity to a loss of chloroplast translation in Arabidopsis. Plant Physiol. 166, 2013–2027 (2014).

    Article  Google Scholar 

  27. Parker, N., Wang, Y. & Meinke, D. Analysis of Arabidopsis accessions hypersensitive to a loss of chloroplast translation. Plant Physiol. 172, 1862–1875 (2016).

    Article  CAS  Google Scholar 

  28. Scharff, L. B. & Bock, R. Synthetic biology in plastids. Plant J. 78, 783–798 (2014).

    Article  CAS  Google Scholar 

  29. Ikeuchi, M., Ogawa, Y., Iwase, A. & Sugimoto, K. Plant regeneration: cellular origins and molecular mechanisms. Development 143, 1442–1451 (2016).

    Article  CAS  Google Scholar 

  30. Weigel, D. & Glazebrook, J. Root transformation of Arabidopsis. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot4671 (2006).

  31. Bechtold, U., Ferguson, J. N. & Mullineaux, P. M. To defend or to grow: lessons from Arabidopsis C24. J. Exp. Bot. 69, 2809–2821 (2018).

    Article  Google Scholar 

  32. Fujimoto, R., Taylor, J. M., Shirasawa, S., Peacock, W. J. & Dennis, E. S. Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc. Natl Acad. Sci. USA 109, 7109–7114 (2012).

    Article  CAS  Google Scholar 

  33. Svab, Z. & Maliga, P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl Acad. Sci. USA 90, 913–917 (1993).

    Article  CAS  Google Scholar 

  34. Zubko, M. K. & Day, A. Stable albinism induced without mutagenesis: a model for ribosome-free plastid inheritance. Plant J. 15, 265–271 (1998).

    Article  CAS  Google Scholar 

  35. Huang, F.-C. et al. Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol. Genet. Genomics 268, 19–27 (2002).

    Article  CAS  Google Scholar 

  36. Kahlau, S. & Bock, R. Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell 20, 856–874 (2008).

    Article  CAS  Google Scholar 

  37. Valkov, V. T. et al. Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: transcriptional and posttranscriptional control. Plant Physiol. 150, 2030–2044 (2009).

    Article  CAS  Google Scholar 

  38. Caroca, R., Howell, K. A., Hasse, C., Ruf, S. & Bock, R. Design of chimeric expression elements that confer high-level gene activity in chromoplasts. Plant J. 73, 368–379 (2013).

    Article  CAS  Google Scholar 

  39. Zhang, J. et al. Identification of cis-elements conferring high levels of gene expression in non-green plastids. Plant J. 72, 115–128 (2012).

    Article  CAS  Google Scholar 

  40. Kuroda, H. & Maliga, P. Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res. 29, 970–975 (2001).

    Article  CAS  Google Scholar 

  41. Ye, G.-N. et al. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J. 25, 261–270 (2001).

    Article  CAS  Google Scholar 

  42. Tangphatsornruang, S., Birch-Machin, I., Newell, C. A. & Gray, J. C. The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Mol. Biol. 76, 385–396 (2011).

    Article  CAS  Google Scholar 

  43. Wang, Z.-P. et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144 (2015).

    Article  Google Scholar 

  44. Azhagiri, A. K. & Maliga, P. Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant J. 52, 817–823 (2007).

    Article  CAS  Google Scholar 

  45. Ruf, S., Karcher, D. & Bock, R. Determining the transgene containment level provided by chloroplast transformation. Proc. Natl Acad. Sci. USA 104, 6998–7002 (2007).

    Article  CAS  Google Scholar 

  46. Greiner, S., Sobanski, J. & Bock, R. Why are most organelle genomes transmitted maternally? Bioessays 37, 80–94 (2014).

    Article  Google Scholar 

  47. Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).

    Article  CAS  Google Scholar 

  48. Sharwood, R. E. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. New Phytol. 213, 494–510 (2017).

    Article  CAS  Google Scholar 

  49. Naqvi, S. et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl Acad. Sci. USA 106, 7762–7767 (2009).

    Article  CAS  Google Scholar 

  50. Fuentes, P. et al. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. eLife 5, e13664 (2016).

    Article  Google Scholar 

  51. Staub, J. M. & Maliga, P. Translation of the psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J. 6, 547–553 (1994).

    Article  CAS  Google Scholar 

  52. Barahimipour, R. et al. Dissecting the contributions of GC content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii. Plant J. 84, 704–717 (2015).

    Article  CAS  Google Scholar 

  53. Ehrnthaler, M. et al. Synthetic lethality in the tobacco plastid ribosome and its rescue at elevated growth temperatures. Plant Cell 26, 765–776 (2014).

    Article  CAS  Google Scholar 

  54. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol. Plant. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  55. Matsubayashi, Y., Goto, T. & Sakagami, Y. Chemical nursing: phytosulfokine improves genetic transformation efficiency by promoting the proliferation of surviving cells on selective media. Plant Cell Rep. 23, 155–158 (2004).

    Article  CAS  Google Scholar 

  56. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000).

    Article  CAS  Google Scholar 

  57. Doyle, J. J. & Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus 12, 13–15 (1990).

    Google Scholar 

Download references

Acknowledgements

We thank M. M. Bednarska, C. Runge and M. Rößner for excellent technical assistance, K. Kiemel and R. Narawitz for media preparation and help with tissue culture, D. Kleinschmidt for microscopy, and J. Zhang and D. Karcher for help with vector design. This research was financed by the Max Planck Society and a grant from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (ERC-ADG-2014; grant agreement 669982) to R.B.

Author information

Authors and Affiliations

Authors

Contributions

S.R., J.F. and R.B. designed the research. C.H., X.K., S.S., A.S., L.S. and J.F. performed the experiments. All authors participated in data evaluation. R.B. wrote the manuscript, with input from S.R. and J.F.

Corresponding author

Correspondence to Ralph Bock.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Plants thanks Francis Quétier, Spencer M. Whitney and other anonymous reviewers for their contributions to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8 and Supplementary Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruf, S., Forner, J., Hasse, C. et al. High-efficiency generation of fertile transplastomic Arabidopsis plants. Nat. Plants 5, 282–289 (2019). https://doi.org/10.1038/s41477-019-0359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0359-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing