Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Concerted expression of a cell cycle regulator and a metabolic enzyme from a bicistronic transcript in plants

Abstract

Eukaryotic mRNAs frequently contain upstream open reading frames (uORFs), encoding small peptides that may control translation of the main ORF (mORF). Here, we report the characterization of a distinct bicistronic transcript in Arabidopsis. We analysed loss-of-function phenotypes of the inorganic polyphosphatase TRIPHOSPHATE TUNNEL METALLOENZYME 3 (AtTTM3), and found that catalytically inactive versions of the enzyme could fully complement embryo and growth-related phenotypes. We could rationalize these puzzling findings by characterizing a uORF in the AtTTM3 locus encoding CELL DIVISION CYCLE PROTEIN 26 (CDC26), an orthologue of the cell cycle regulator. We demonstrate that AtCDC26 is part of the plant anaphase promoting complex/cyclosome (APC/C), regulates accumulation of APC/C target proteins and controls cell division, growth and embryo development. AtCDC26 and AtTTM3 are translated from a single transcript conserved across the plant lineage. While there is no apparent biochemical connection between the two gene products, AtTTM3 coordinates AtCDC26 translation by recruiting the transcript into polysomes. Our work highlights that uORFs may encode functional proteins in plant genomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different ttm3 mutant alleles show inconsistent phenotypes related to embryo development and plant growth.
Fig. 2: Catalytically inactive TTM3 variants complement ttm3 phenotypes when expressed from the native promoter including the 5′ UTR.
Fig. 3: A uORF in TTM3 encodes the cell cycle regulator AtCDC26.
Fig. 4: CDC26 is expressed from a bicistronic transcript in plants.
Fig. 5: TTM3 translation recruits the bicistronic transcript to polysomes.
Fig. 6: The CDC26TTM3 transcript is a target of NMD.

Similar content being viewed by others

Data availability

The authors confirm that all relevant data have been included in this paper and are available upon reasonable request. The Arabidopsis mutant accessions ttm3-1 (SALK_133625) and ttm3-4 (SALK_050319) are available at the Nottingham Arabidopsis Stock Center (NASC; http://arabidopsis.info/). ttm3-2 (FLAG_368E06, EMBL number AJ838411) is available at the Versailles Arabidopsis Stock Center (http://publiclines.versailles.inra.fr/).

References

  1. Oyama, M. et al. Analysis of small human proteins reveals the translation of upstream open reading frames of mRNAs. Genome Res. 14, 2048–2052 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnstone, T. G., Bazzini, A. A. & Giraldez, A. J. Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J. 35, 706–723 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wethmar, K. The regulatory potential of upstream open reading frames in eukaryotic gene expression. RNA 5, 765–778 (2014).

    CAS  PubMed  Google Scholar 

  4. Wethmar, K., Barbosa-Silva, A., Andrade-Navarro, M. A. & Leutz, A. uORFdb—a comprehensive literature database on eukaryotic uORF biology. Nucleic Acids Res. 42, D60–D67 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Menschaert, G. et al. Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events. Mol. Cell. Proteomics 12, 1780–1790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. von Arnim, A. G., Jia, Q. & Vaughn, J. N. Regulation of plant translation by upstream open reading frames. Plant Sci. 214, 1–12 (2014).

    Article  Google Scholar 

  7. Schepetilnikov, M. et al. TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J. 32, 1087–1102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, F., Roy, B., Dunlap, J. R., Enganti, R. & von Arnim, A. G. Translational control of Arabidopsis meristem stability and organogenesis by the eukaryotic translation factor eIF3h. PLoS ONE 9, e95396 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pajerowska-Mukhtar, K. M. et al. The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Curr. Biol. 22, 103–112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Starck, S. R. et al. Translation from the 5′ untranslated region shapes the integrated stress response. Science 351, aad3867 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wiese, A., Elzinga, N., Wobbes, B. & Smeekens, S. A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell 16, 1717–1729 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kurihara, Y. et al. Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis. Proc. Natl Acad. Sci. USA 106, 2453–2458 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Nyikó, T., Sonkoly, B., Mérai, Z., Benkovics, A. H. & Silhavy, D. Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner. Plant Mol. Biol. 71, 367–378 (2009).

    Article  PubMed  Google Scholar 

  14. Malabat, C., Feuerbach, F., Ma, L., Saveanu, C. & Jacquier, A. Quality control of transcription start site selection by nonsense-mediated-mRNA decay. eLife 4, e06722 (2015).

    Article  PubMed Central  Google Scholar 

  15. Mouilleron, H., Delcourt, V. & Roucou, X. Death of a dogma: eukaryotic mRNAs can code for more than one protein. Nucleic Acids Res. 44, 14–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Ryabova, L. A., Pooggin, M. M. & Hohn, T. Translation reinitiation and leaky scanning in plant viruses. Virus Res. 119, 52–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, S. J. Expression of growth/differentiation factor 1 in the nervous system: conservation of a bicistronic structure. Proc. Natl Acad. Sci. USA 88, 4250–4254 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Ouelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    Article  Google Scholar 

  19. Klemke, M., Kehlenbach, R. H. & Huttner, W. B. Two overlapping reading frames in a single exon encode interacting proteins—a novel way of gene usage. EMBO J. 20, 3849–3860 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, C., Lai, H.-L., Lee, Y.-C., Chien, C.-L. & Chern, Y. The A2A adenosine receptor is a dual coding gene. J. Biol. Chem. 289, 1257–1270 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Autio, K. J. et al. An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing. FASEB J. 22, 569–578 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Moeder, W. et al. Crystal structure and biochemical analyses reveal that the Arabidopsis triphosphate tunnel metalloenzyme AtTTM3 is a tripolyphosphatase involved in root development. Plant J. 76, 615–626 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Martinez, J., Truffault, V. & Hothorn, M. Structural determinants for substrate binding and catalysis in triphosphate tunnel metalloenzymes. J. Biol. Chem. 290, 23348–23360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vaughn, J. N., Ellingson, S. R., Mignone, F. & von Arnim, A. Known and novel post-transcriptional regulatory sequences are conserved across plant families. RNA 18, 368–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Capron, A., Okrész, L. & Genschik, P. First glance at the plant APC/C, a highly conserved ubiquitin-protein ligase. Trends Plant Sci. 8, 83–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Lima, M. et al. Genomic evolution and complexity of the Anaphase-promoting Complex (APC) in land plants. BMC Plant Biol. 10, 254 (2010).

    Article  PubMed Central  Google Scholar 

  27. Chang, L., Zhang, Z., Yang, J., McLaughlin, S. H. & Barford, D. Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature 522, 450–454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hutchins, J. R. A. et al. Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328, 593–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zachariae, W., Shin, T. H., Galova, M., Obermaier, B. & Nasmyth, K. Identification of subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science 274, 1201–1204 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Genschik, P., Marrocco, K., Bach, L., Noir, S. & Criqui, M.-C. Selective protein degradation: a rheostat to modulate cell-cycle phase transitions. J. Exp. Bot. 65, 2603–2615 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Ubeda-Tomás, S. et al. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr. Biol. 19, 1194–1199 (2009).

    Article  PubMed  Google Scholar 

  32. Genschik, P., Criqui, M. C., Parmentier, Y., Derevier, A. & Fleck, J. Cell cycle -dependent proteolysis in plants. Identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell 10, 2063–2076 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Criqui, M. C. et al. Cell cycle-dependent proteolysis and ectopic overexpression of cyclin B1 in tobacco BY2 cells. Plant J. 24, 763–773 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cornelis, S. et al. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol. Cell 5, 597–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Marrocco, K., Thomann, A., Parmentier, Y., Genschik, P. & Criqui, M. C. The APC/C E3 ligase remains active in most post-mitotic Arabidopsis cells and is required for proper vasculature development and organization. Development 136, 1475–1485 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Zheng, B., Chen, X. & McCormick, S. The Anaphase-promoting complex is a dual integrator that regulates both microRNA-mediated transcriptional regulation of cyclin B1 and degradation of cyclin B1 during Arabidopsis male gametophyte development. Plant Cell 23, 1033–1046 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schepetilnikov, M. & Ryabova, L. A. Recent discoveries on the role of TOR (Target of Rapamycin) signaling in translation in plants. Plant Physiol. 176, 1095–1105 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Rayson, S. et al. A role for nonsense-mediated mRNA decay in plants: pathogen responses are induced in Arabidopsis thaliana NMD mutants. PLoS ONE 7, e31917 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Racki, L. R. et al. Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 114, E2440–E2449 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Bru, S. et al. Polyphosphate is involved in cell cycle progression and genomic stability in Saccharomyces cerevisiae. Mol. Microbiol. 101, 367–380 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Kozak, M. Constraints on reinitiation of translation in mammals. Nucleic Acids Res. 29, 5226–5232 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kozak, M. Pushing the limits of the scanning mechanism for initiation of translation. Gene 299, 1–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Matsuda, D. & Dreher, T. W. Close spacing of AUG initiation codons confers dicistronic character on a eukaryotic mRNA. RNA 12, 1338–1349 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kozak, M. Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J. 16, 2482–2492 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakagawa, S., Niimura, Y., Gojobori, T., Tanaka, H. & Miura, K. Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes. Nucleic Acids Res. 36, 861–871 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Tsutsui, H. & Higashiyama, T. pKAMA-ITACHI vectors for highly efficient CRISPR/cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol. 58, 46–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Meijering, E. et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytom. Part J. Int. Soc. Anal. Cytol. 58, 167–176 (2004).

    CAS  Google Scholar 

  49. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  50. Dilba, G., Bretz, F., Guiard, V. & Hothorn, L. A. Simultaneous confidence intervals for ratios with applications to the comparison of several treatments with a control. Methods Inf. Med. 43, 465–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Karimi, M., De Meyer, B. & Hilson, P. Modular cloning in plant cells. Trends Plant Sci. 10, 103–105 (2005).

    Article  CAS  Google Scholar 

  52. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  Google Scholar 

  54. Chevallet, M., Luche, S. & Rabilloud, T. Silver staining of proteins in polyacrylamide gels. Nat. Protoc. 1, 1852–1858 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Kurihara, D., Mizuta, Y., Sato, Y. & Higashiyama, T. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142, 4168–4179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hacham, Y. et al. Brassinosteroid perception in the epidermis controls root meristem size. Development 138, 839–848 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Faye, M. D., Graber, T. E. & Holcik, M. Assessment of selective mRNA translation in mammalian cells by polysome profiling. J. Vis. Exp. 92, e52295 (2014).

    Google Scholar 

Download references

Acknowledgements

The authors thank J. M. Perez-Perez for sending the CYCB1;1-GFP line, A. Wachter for lba1 and upf3-1 seeds, and R. Ulm, A. Wachter and N. Geldner for critical reading of the manuscript. This project was supported by an ERC starting grant from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement no. 310856, the Max Planck Society, the European Molecular Biology Organisation (EMBO) Young Investigator Programme (to M.H.), the Howard Hughes Medical Institute (International Research Scholar Award to M.H.) and the Swiss National Fund Sinergia grant (CRSII3-154471 to Y.P.).

Author information

Authors and Affiliations

Authors

Contributions

L.L.-O. and M.H. designed the study, L.L.-O. performed the majority of the experiments and analysed data. J.W. and A.P. characterized the ttm3 insertion lines, the ttm3-2 embryo phenotype, performed localization experiments and produced the TTM3-specific antibody. J.D. and L.L.-O. designed and performed the polysome profile assays under the supervision of Y.P. J.M. together with L.L.-O. purified the AtCDC26 protein and antibody. S.L. quantified CYCB1;1 levels, Y.J. generated transgenic reporter lines and L.A.H. performed statistical analyses. L.L.-O., J.W., S.L., L.A.H. and M.H. analysed data, and M.H. supervised the study. L.L.-O. and M.H. drafted the manuscript and all authors discussed the results, edited and approved the final version of the manuscript.

Corresponding authors

Correspondence to Laura Lorenzo-Orts or Michael Hothorn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary Tables 1 and 2, and Supplementary Data 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzo-Orts, L., Witthoeft, J., Deforges, J. et al. Concerted expression of a cell cycle regulator and a metabolic enzyme from a bicistronic transcript in plants. Nature Plants 5, 184–193 (2019). https://doi.org/10.1038/s41477-019-0358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0358-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing