Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2

Abstract

Rising atmospheric carbon dioxide concentration should stimulate biomass production directly via biochemical stimulation of carbon assimilation, and indirectly via water savings caused by increased plant water-use efficiency. Because of these water savings, the CO2 fertilization effect (CFE) should be stronger at drier sites, yet large differences among experiments in grassland biomass response to elevated CO2 appear to be unrelated to annual precipitation, preventing useful generalizations. Here, we show that, as predicted, the impact of elevated CO2 on biomass production in 19 globally distributed temperate grassland experiments reduces as mean precipitation in seasons other than spring increases, but that it rises unexpectedly as mean spring precipitation increases. Moreover, because sites with high spring precipitation also tend to have high precipitation at other times, these effects of spring and non-spring precipitation on the CO2 response offset each other, constraining the response of ecosystem productivity to rising CO2. This explains why previous analyses were unable to discern a reliable trend between site dryness and the CFE. Thus, the CFE in temperate grasslands worldwide will be constrained by their natural rainfall seasonality such that the stimulation of biomass by rising CO2 could be substantially less than anticipated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Impact of seasonal precipitation on the CFE.
Fig. 2: The CFE across 19 temperate grassland experiments as a function of different potential drivers.
Fig. 3: Predicted CFE of aboveground biomass for given spring and non-spring precipitation values.
Fig. 4: Modelled CFE in temperate grasslands.

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information files) with the exception of the gridded geographic information system data, which are available from https://crudata.uea.ac.uk/cru/data/hrg/tmc/ (precipitation data) and http://glcf.umd.edu/data/landcover/data.shtml (land-cover data).

References

  1. 1.

    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

  2. 2.

    Drake, B. G., GonzalezMeler, M. A. & Long, S. P. More efficient plants: a consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 609–639 (1997).

  3. 3.

    Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5, 528–534 (2015).

  4. 4.

    Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

  5. 5.

    De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., Prentice, I. C. & Terrer, C. Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity. Nat. Clim. Change 6, 892–893 (2016).

  6. 6.

    Morgan, J. A. et al. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140, 11–25 (2004).

  7. 7.

    Fay, P. A. et al. Dominant plant taxa predict plant productivity responses to CO2 enrichment across precipitation and soil gradients. AoB Plants 7, plv027 (2015).

  8. 8.

    Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).

  9. 9.

    Lee, M., Manning, P., Rist, J., Power, S. A. & Marsh, C. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Phil. Trans. R. Soc. Lond. B 365, 2047–2056 (2010).

  10. 10.

    Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

  11. 11.

    Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. USA 113, 12757–12762 (2016).

  12. 12.

    Leuzinger, S. & Körner, C. Rainfall distribution is the main driver of runoff under future CO2-concentration in a temperate deciduous forest. Glob. Change Biol. 16, 246–254 (2010).

  13. 13.

    Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).

  14. 14.

    Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).

  15. 15.

    Hovenden, M. J., Newton, P. C. D. & Wills, K. E. Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature 511, 583–586 (2014).

  16. 16.

    Morgan, J. A. et al. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476, 202–205 (2011).

  17. 17.

    Langley, J. A. & Megonigal, J. P. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466, 96–99 (2010).

  18. 18.

    Reich, P. B. & Hobbie, S. E. Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nat. Clim. Change 3, 278–282 (2013).

  19. 19.

    Lüscher, A., Daepp, M., Blum, H., Hartwig, U. A. & Nösberger, J. Fertile temperate grassland under elevated atmospheric CO2—role of feed-back mechanisms and availability of growth resources. Eur. J. Agronomy 21, 379–398 (2004).

  20. 20.

    Darenova, E., Holub, P., Krupkova, L. & Pavelka, M. Effect of repeated spring drought and summer heavy rain on managed grassland biomass production and CO2 efflux. J. Plant Ecol. 10, 476–485 (2017).

  21. 21.

    Bates, J. D., Svejcar, T., Miller, R. F. & Angell, R. A. The effects of precipitation timing on sagebrush steppe vegetation. J. Arid Environ. 64, 670–697 (2006).

  22. 22.

    Smart, A. J., Dunn, B. H., Johnson, P. S., Xu, L. & Gates, R. N. Using weather data to explain herbage yield on three great plains plant communities. Rangeland Ecol. Manage. 60, 146–153 (2007).

  23. 23.

    Epstein, H. E., Burke, I. C. & Lauenroth, W. K. Response of the shortgrass steppe to changes in rainfall seasonality. Ecosystems 2, 139–150 (1999).

  24. 24.

    Reich, P. B. et al. Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proc. Natl Acad. Sci. USA 101, 10101–10106 (2004).

  25. 25.

    Lüscher, A., Hendrey, G. R. & Nösberger, J. Long-term responsiveness to free air CO2 enrichment of functional types, species and genotypes of plants from fertile permanent grassland. Oecologia 113, 37–45 (1998).

  26. 26.

    Wilcox, K. R., Blair, J. M., Smith, M. D. & Knapp, A. K. Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions? Ecology 97, 561–568 (2016).

  27. 27.

    Averill, C., Waring, B. G. & Hawkes, C. V. Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture. Glob. Change Biol. 22, 1957–1964 (2016).

  28. 28.

    Tredennick, A. T., Kleinhesselink, A. R., Taylor, J. B. & Adler, P. B. Ecosystem functional response across precipitation extremes in a sagebrush steppe. PeerJ 6, e4485 (2018).

  29. 29.

    Luo, Y. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).

  30. 30.

    Cable, J. M. et al. Antecedent conditions influence soil respiration differences in shrub and grass patches. Ecosystems 16, 1230–1247 (2013).

  31. 31.

    Ogle, K. et al. Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 18, 221–235 (2015).

  32. 32.

    Peltier, D. M. P., Fell, M. & Ogle, K. Legacy effects of drought in the southwestern United States: a multi-species synthesis. Ecol. Monogr. 86, 312–326 (2016).

  33. 33.

    Reynolds, J. F., Kemp, P. R., Ogle, K. & Fernandez, R. J. Modifying the ‘pulse-reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141, 194–210 (2004).

  34. 34.

    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).

  35. 35.

    Sala, O. E., Parton, W. J., Joyce, L. A. & Lauenroth, W. K. Primary production of the central grassland region of the United States. Ecology 69, 40–45 (1988).

  36. 36.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  37. 37.

    R Development Core Team R : A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  38. 38.

    MuMIn: Multi-Model Inference. R package version 1.15.6 (2016).

  39. 39.

    Logan, M. Biostatistical Design and Analysis Using R: A Practical Guide (Wiley-Blackwell, Chichester, 2010).

  40. 40.

    Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression and Survival Analysis (Springer, New York, 2001).

  41. 41.

    Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw. 8, 1–27 (2003).

  42. 42.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, New York, 2002).

  43. 43.

    Hansen, M., DeFries, R., Townshend, J. R. G. & Sohlberg, R. Global land cover classification at 1 km resolution using a decision tree classifier. Int. J. Remote Sens. 21, 1331–1365 (2000).

Download references

Acknowledgements

We thank R. Brinkhoff for assistance with collating the data for this analysis. This research was initiated at the workshop ‘Using results from global change experiments to inform land model development and calibration’, which was co-sponsored by the US-based INTERFACE Research Coordination Network and Research Group of Global Change Ecology at Henan University (funded by MOST2013CB956300 and NSFC41030104/ D0308).

Author information

S.L., J.A.L., M.J.H. and S.F. conceived the research idea and designed the study, with assistance from P.C.D.N. and K.H. M.J.H., S.L., P.C.D.N., J.A.L. and S.F. performed the analysis and, together with A.L. and P.B.R., led the writing of the manuscript. A.F. performed the mapping and all geographical analyses. P.C.D.N., M.J.H., J.A.L., L.C.A., D.M.B., N.R.C., J.S.D., J.K., A.L., P.A.N., C.B., P.B.R., S.W. and J.S. contributed unpublished data. All authors contributed to the final version of the manuscript.

Correspondence to Mark J. Hovenden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Tables 1–4 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hovenden, M.J., Leuzinger, S., Newton, P.C.D. et al. Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nature Plants 5, 167–173 (2019). https://doi.org/10.1038/s41477-018-0356-x

Download citation

Further reading

  • Scientists’ warning to humanity: microorganisms and climate change

    • Ricardo Cavicchioli
    • , William J. Ripple
    • , Kenneth N. Timmis
    • , Farooq Azam
    • , Lars R. Bakken
    • , Matthew Baylis
    • , Michael J. Behrenfeld
    • , Antje Boetius
    • , Philip W. Boyd
    • , Aimée T. Classen
    • , Thomas W. Crowther
    • , Roberto Danovaro
    • , Christine M. Foreman
    • , Jef Huisman
    • , David A. Hutchins
    • , Janet K. Jansson
    • , David M. Karl
    • , Britt Koskella
    • , David B. Mark Welch
    • , Jennifer B. H. Martiny
    • , Mary Ann Moran
    • , Victoria J. Orphan
    • , David S. Reay
    • , Justin V. Remais
    • , Virginia I. Rich
    • , Brajesh K. Singh
    • , Lisa Y. Stein
    • , Frank J. Stewart
    • , Matthew B. Sullivan
    • , Madeleine J. H. van Oppen
    • , Scott C. Weaver
    • , Eric A. Webb
    •  & Nicole S. Webster

    Nature Reviews Microbiology (2019)

  • Roles of Climate Change and Increasing CO2 in Driving Changes of Net Primary Productivity in China Simulated Using a Dynamic Global Vegetation Model

    • Qing Huang
    • , Weimin Ju
    • , Fangyi Zhang
    •  & Qian Zhang

    Sustainability (2019)

  • A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change

    • Jian Song
    • , Shiqiang Wan
    • , Shilong Piao
    • , Alan K. Knapp
    • , Aimée T. Classen
    • , Sara Vicca
    • , Philippe Ciais
    • , Mark J. Hovenden
    • , Sebastian Leuzinger
    • , Claus Beier
    • , Paul Kardol
    • , Jianyang Xia
    • , Qiang Liu
    • , Jingyi Ru
    • , Zhenxing Zhou
    • , Yiqi Luo
    • , Dali Guo
    • , J. Adam Langley
    • , Jakob Zscheischler
    • , Jeffrey S. Dukes
    • , Jianwu Tang
    • , Jiquan Chen
    • , Kirsten S. Hofmockel
    • , Lara M. Kueppers
    • , Lindsey Rustad
    • , Lingli Liu
    • , Melinda D. Smith
    • , Pamela H. Templer
    • , R. Quinn Thomas
    • , Richard J. Norby
    • , Richard P. Phillips
    • , Shuli Niu
    • , Simone Fatichi
    • , Yingping Wang
    • , Pengshuai Shao
    • , Hongyan Han
    • , Dandan Wang
    • , Lingjie Lei
    • , Jiali Wang
    • , Xiaona Li
    • , Qian Zhang
    • , Xiaoming Li
    • , Fanglong Su
    • , Bin Liu
    • , Fan Yang
    • , Gaigai Ma
    • , Guoyong Li
    • , Yanchun Liu
    • , Yinzhan Liu
    • , Zhongling Yang
    • , Kesheng Zhang
    • , Yuan Miao
    • , Mengjun Hu
    • , Chuang Yan
    • , Ang Zhang
    • , Mingxing Zhong
    • , Yan Hui
    • , Ying Li
    •  & Mengmei Zheng

    Nature Ecology & Evolution (2019)