Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells

Abstract

Plant vacuoles are dynamic organelles that play essential roles in regulating growth and development. Two distinct models of vacuole biogenesis have been proposed: separate vacuoles are formed by the fusion of endosomes, or the single interconnected vacuole is derived from the endoplasmic reticulum. These two models are based on studies of two-dimensional (2D) transmission electron microscopy and 3D confocal imaging, respectively. Here, we performed 3D electron tomography at nanometre resolution to illustrate vacuole biogenesis in Arabidopsis root cells. The whole-cell electron tomography analysis first identified unique small vacuoles (SVs; 400–1,000 nm in diameter) as nascent vacuoles in early developmental cortical cells. These SVs contained intraluminal vesicles and were mainly derived/matured from multivesicular body (MVB) fusion. The whole-cell vacuole models and statistical analysis on wild-type root cells of different vacuole developmental stages demonstrated that central vacuoles were derived from MVB-to-SV transition and subsequent fusions of SVs. Further electron tomography analysis on mutants defective in MVB formation/maturation or vacuole fusion demonstrated that central vacuole formation required functional MVBs and membrane fusion machineries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Whole-cell electron tomography analysis of SVs in relationship with other organelles in a cortical cell of early developmental stage.
Fig. 2: MVBs mature and fuse to form SVs in early root cortical cells.
Fig. 3: The transition from MVB to SV accompanies gradual degradation of ILVs.
Fig. 4: Fusions among SVs generate larger-sized vacuoles.
Fig. 5: Vacuoles are gradually increasing in size along an apical-to-basal developmental gradient in the root cortex in whole-cell electron tomography analyses.
Fig. 6: Efficient fusion of SVs requires ESCRT, Rab GTPase and SNARE proteins in mutant analyses.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623–635 (2009).

    Article  CAS  Google Scholar 

  2. Luzio, J. P., Hackmann, Y., Dieckmann, N. M. & Griffiths, G. M. The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb. Perspect. Biol. 6, a016840 (2014).

    Article  Google Scholar 

  3. Armstrong, J. Yeast vacuoles: more than a model lysosome. Trends Cell Biol. 20, 580–585 (2010).

    Article  CAS  Google Scholar 

  4. Bryant, N. J. & Stevens, T. H. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol. Mol. Biol. Rev. 62, 230–247 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shimada, T., Takagi, J., Ichino, T., Shirakawa, M. & Hara-Nishimura, I. Plant vacuoles. Annu. Rev. Plant Biol. 69, 123–145 (2018).

    Article  CAS  Google Scholar 

  6. Paris, N., Stanley, C. M., Jones, R. L. & Rogers, J. C. Plant cells contain two functionally distinct vacuolar compartments. Cell 85, 563–572 (1996).

    Article  CAS  Google Scholar 

  7. Feeney, M., Kittelmann, M., Menassa, R., Hawes, C. & Frigerio, L. Protein storage vacuoles originate from remodeled preexisting vacuoles in Arabidopsis thaliana. Plant Physiol. 177, 241–254 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng, H. Q. & Staehelin, L. A. Protein storage vacuoles are transformed into lytic vacuoles in root meristematic cells of germinating seedlings by multiple, cell type-specific mechanisms. Plant Physiol. 155, 2023–2035 (2011).

    Article  CAS  Google Scholar 

  9. Scheres, B. & Wolkenfelt, H. The Arabidopsis root as a model to study plant development. Plant Physiol. Biochem. 36, 21–32 (1998).

    Article  CAS  Google Scholar 

  10. Scheres, B., Benfey, P. & Dolan, L. Root development. Arabidopsis Book 1, e0101 (2002).

    Article  Google Scholar 

  11. Zouhar, J. & Rojo, E. Plant vacuoles: where did they come from and where are they heading? Curr. Opin. Plant Biol. 12, 677–684 (2009).

    Article  CAS  Google Scholar 

  12. Eisenach, C., Francisco, R. & Martinoia, E. Plant vacuoles. Curr. Biol. 25, R136–R137 (2015).

    Article  CAS  Google Scholar 

  13. Zhang, C. H., Hicks, G. R. & Raikhel, N. V. Plant vacuole morphology and vacuolar trafficking. Front. Plant Sci. 5, 476 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Viotti, C. ER and vacuoles: never been closer. Front. Plant Sci. 5, 20 (2014).

    Article  Google Scholar 

  15. Marty, F. Plant vacuoles. Plant Cell 11, 587–599 (1999).

    Article  CAS  Google Scholar 

  16. Marty, F. Cytochemical studies on Gerl, provacuoles, and vacuoles in root meristematic cells of Euphorbia. Proc. Natl Acad. Sci. USA 75, 852–856 (1978).

    Article  CAS  Google Scholar 

  17. Viotti, C. et al. The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. Plant Cell 25, 3434–3449 (2013).

    Article  CAS  Google Scholar 

  18. Amelunxen, F. & Heinze, U. On the development of the vacuole in the testa cells of linum seeds. Eur. J. Cell Biol. 35, 343–354 (1984).

    Google Scholar 

  19. Scheuring, D. et al. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc. Natl Acad. Sci. USA 113, 452–457 (2016).

    Article  CAS  Google Scholar 

  20. Lofke, C., Dunser, K., Scheuring, D. & Kleine-Vehn, J. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. eLife 4, e05868 (2015).

    Article  Google Scholar 

  21. Kolb, C. et al. FYVE1 is essential for vacuole biogenesis and intracellular trafficking in Arabidopsis. Plant Physiol. 167, 1361–1373 (2015).

    Article  CAS  Google Scholar 

  22. Kalinowska, K. et al. Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. Proc. Natl Acad. Sci. USA 112, E5543–E5551 (2015).

    Article  CAS  Google Scholar 

  23. Wang, J., Cai, Y., Miao, Y., Lam, S. K. & Jiang, L. Wortmannin induces homotypic fusion of plant prevacuolar compartments. J. Exp. Bot. 60, 3075–3083 (2009).

    Article  CAS  Google Scholar 

  24. Tse, Y. C. et al. Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16, 672–693 (2004).

    Article  CAS  Google Scholar 

  25. Miao, Y. & Jiang, L. Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat. Protoc. 2, 2348–2353 (2007).

    Article  CAS  Google Scholar 

  26. Scheuring, D. et al. Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. Plant Cell 23, 3463–3481 (2011).

    Article  CAS  Google Scholar 

  27. Buono, R. A. et al. ESCRT-mediated vesicle concatenation in plant endosomes. J. Cell Biol. 216, 2167–2177 (2017).

    Article  CAS  Google Scholar 

  28. Takano, J., Miwa, K., Yuan, L. X., von Wiren, N. & Fujiwara, T. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc. Natl Acad. Sci. USA 102, 12276–12281 (2005).

    Article  CAS  Google Scholar 

  29. Zheng, J. M., Han, S. W., Rodriguez-Welsh, M. F. & Rojas-Pierce, M. Homotypic vacuole fusion requires VTI11 and is regulated by phosphoinositides. Mol. Plant 7, 1026–1040 (2014).

    Article  CAS  Google Scholar 

  30. Takemoto, K. et al. Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Proc. Natl Acad. Sci. USA 115, E2457–E2466 (2018).

    Article  CAS  Google Scholar 

  31. Geldner, N. et al. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59, 169–178 (2009).

    Article  CAS  Google Scholar 

  32. Gao, C., Zhuang, X., Shen, J. & Jiang, L. Plant ESCRT complexes: moving beyond endosomal sorting. Trends Plant Sci. 22, 986–998 (2017).

    Article  CAS  Google Scholar 

  33. Gao, C. et al. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. Curr. Biol. 24, 2556–2563 (2014).

    Article  CAS  Google Scholar 

  34. Singh, M. K. et al. Protein delivery to vacuole requires SAND protein-dependent Rab GTPase conversion for MVB–vacuole fusion. Curr. Biol. 24, 1383–1389 (2014).

    Article  CAS  Google Scholar 

  35. Ebine, K. et al. Plant vacuolar trafficking occurs through distinctly regulated pathways. Curr. Biol. 24, 1375–1382 (2014).

    Article  CAS  Google Scholar 

  36. Cui, Y. et al. Activation of the Rab7 GTPase by the MON1–CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in Arabidopsis. Plant Cell 26, 2080–2097 (2014).

    Article  CAS  Google Scholar 

  37. Segui-Simarro, J. M. & Staehelin, L. A. Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis. Planta 223, 223–236 (2006).

    Article  CAS  Google Scholar 

  38. Zhuang, X. et al. ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc. Natl Acad. Sci. USA 114, E426–E435 (2017).

    Article  CAS  Google Scholar 

  39. Ivanov, R. & Robinson, D. G. Turnover of tonoplast proteins. Plant Physiol. 177, 10–11 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Maitrejean, M. & Vitale, A. How are tonoplast proteins degraded? Plant Signal. Behav. 6, 1809–1812 (2011).

    Article  CAS  Google Scholar 

  41. Cui, Y. et al. Biogenesis of plant prevacuolar multivesicular bodies. Mol. Plant 9, 774–786 (2016).

    Article  CAS  Google Scholar 

  42. Jauh, G. Y., Phillips, T. E. & Rogers, J. C. Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11, 1867–1882 (1999).

    Article  CAS  Google Scholar 

  43. Zwiewka, M. et al. The AP-3 adaptor complex is required for vacuolar function in Arabidopsis. Cell Res. 21, 1711–1722 (2011).

    Article  CAS  Google Scholar 

  44. Bottanelli, F., Foresti, O., Hanton, S. & Denecke, J. Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. Plant Cell 23, 3007–3025 (2011).

    Article  CAS  Google Scholar 

  45. Uemura, T. & Ueda, T. Plant vacuolar trafficking driven by Rab and SNARE proteins. Curr. Opin. Plant Biol. 22, 116–121 (2014).

    Article  CAS  Google Scholar 

  46. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  Google Scholar 

  47. Cui, Y. et al. MONENSIN SENSITIVITY1 (MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-mediated Rab7 activation regulates tapetal programmed cell death and pollen development. Plant Physiol. 173, 206–218 (2017).

    Article  CAS  Google Scholar 

  48. Kang, B. H. Electron microscopy and high-pressure freezing of Arabidopsis. Method Cell Biol. 96, 259–283 (2010).

    Article  Google Scholar 

  49. Sattarzadeh, A., Saberianfar, R., Zipfel, W. R., Menassa, R. & Hanson, M. R. Green to red photoconversion of GFP for protein tracking in vivo. Sci. Rep. 5, 11771 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Research Grants Council of Hong Kong (CUHK14130716, 14102417, 14100818, C4011-14R, C4012-16E, C4002-17G and AoE/M-05/12) and the National Natural Science Foundation of China (31270226, 31470294 and 91854201).

Author information

Authors and Affiliations

Authors

Contributions

Y.C., B.-H.K. and L.J. conceived and designed the experiments. Y.C. performed the electron tomography analysis. Y.C., W.C., Y.H., H.Y.W., W.S.W. and H.K.L. generated the 3D models. Y.C., W.C., Y.H., Q.Z., M.W., X.Z., J.G., Y.Z., C.G., Y.D. and P.W. performed the other experiments. Y.C., T.U., M.R.-P., K.T., B.-H.K. and L.J. analysed the data. Y.C. and L.J. wrote the paper.

Corresponding authors

Correspondence to Yong Cui or Liwen Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8.

Reporting Summary

Supplementary Video 1

Whole-cell electron tomography analyses of SVs in relationship with other organelles in Cell 1.

Supplementary Video 2

3D tomography analyses of detailed structures and relationships of ER, Golgi, TGN, MVBs and SVs.

Supplementary Video 3

3D tomography analyses of fusion between MVBs and SVs, along with a transfer of ILVs.

Supplementary Video 4

Whole-cell electron tomography analyses of vacuoles in Cell 2.

Supplementary Video 5

Whole-cell electron tomography analyses of vacuoles in Cell 3.

Supplementary Video 6

3D tomography analyses of vacuoles in WT and various mutants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Cao, W., He, Y. et al. A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. Nature Plants 5, 95–105 (2019). https://doi.org/10.1038/s41477-018-0328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0328-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing