Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Biodiversity synthesis across the green branches of the tree of life

Abstract

Advances in biodiversity science, coupled with new technologies and big data platforms, are expanding our ability to explore and understand the natural world. For the first time, biologists can link data from growing repositories and computational approaches to better integrate plant evolution and ecology at the broadest extents. The emerging synthesis is reshaping our views of plant diversification and guiding new approaches to conservation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A diagram showing how global biodiversity data resources can be used to develop synthetic analyses to better understand the pattern and processes behind the assembly of modern-day plant communities.

Similar content being viewed by others

References

  1. Darwin, C. On the Origin of Species (John Murray, London, 1859).

  2. GenBank (National Institutes of Health); https://www.ncbi.nlm.nih.gov/genbank/

  3. Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).

    Article  CAS  Google Scholar 

  4. GBIF (Global Biodiversity Information Facility); https://www.gbif.org/

  5. iDigBio (National Science Foundation); https://www.idigbio.org/

  6. Paleobiology Database (National Science Foundation); https://paleobiodb.org/#/

  7. Neotoma Paleoecology Database (Neotoma); https://www.neotomadb.org/

  8. TRY: Plant Trait Database (Future Earth & Max Planck Institute); https://www.try-db.org

  9. WorldClim Version2 (Feed the Future); http://worldclim.org/version2

  10. SoilGrids (ISRIC); https://soilgrids.org

  11. HydroSHEDS (WWF); https://www.hydrosheds.org/

  12. Paleoclimate Modelling Intercomparison Project (WCRP & IGBP); https://pmip.lsce.ipsl.fr/

  13. Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).

    Article  Google Scholar 

  14. Catalogue of Life (Species 2000 & ITIS); http://www.catalogueoflife.org/

  15. Lifemapper (National Science Foundation); http://lifemapper.org/

  16. BIEN (NCEAS); http://bien.nceas.ucsb.edu/bien/

  17. Cavender-Bares, J. et al. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits and implications for management in the era of global change. Annu. Rev. Ecol. Evol. S. 47, 433–462 (2016).

    Article  Google Scholar 

  18. Gei, M. et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).

    Article  Google Scholar 

  19. Zanne, A. E. et al. Functional biogeography of angiosperms: life at the extremes. New Phytol. 218, 1697–1709 (2018).

    Article  Google Scholar 

  20. Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 976–982 (2018).

    Article  Google Scholar 

  21. Lu, L.-M. et al. Evolutionary history of the angiosperm flora of China. Nature 554, 234–238 (2018).

    Article  CAS  Google Scholar 

  22. Thornhill, A. H. et al. Continental‐scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. J. Biogeogr. 43, 2085–2098 (2016).

    Article  Google Scholar 

  23. Thornhill, A. H. et al. Spatial phylogenetics of the native California flora. BMC Biol. 15, 96 (2017).

    Article  Google Scholar 

  24. Allen, J. M. et al. Spatial phylogenetics of Florida vascular plants: The effects of calibration and uncertainty on diversity estimates. iScience (in the press).

  25. Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl Acad. Sci. USA 111, E4859–E4868 (2014).

    Article  CAS  Google Scholar 

  26. The Angiosperm Phylogeny Group et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).

  27. Eiserhardt, W. L. et al. A roadmap for global synthesis of the plant tree of life. Am. J. Bot. 105, 614–622 (2018).

    Article  Google Scholar 

  28. Testo, W. & Sundue, M. A 4000-species dataset provides new insight into the evolution of ferns. Mol. Phylogenet. Evol. 105, 200–211 (2016).

    Article  Google Scholar 

  29. Rose, J. P. et al. Shape analysis of moss (Bryophyta) sporophytes: Insights into land plant evolution. Am. J. Bot. 103, 652–662 (2016).

    Article  CAS  Google Scholar 

  30. Willis, K. J. (ed.) State of the World’s Plants 2017 (Royal Botanic Gardens, Kew, 2017).

  31. Jetz, W. et al. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  CAS  Google Scholar 

  32. Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    Article  CAS  Google Scholar 

  33. Roelants, K. et al. Global patterns of diversification in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887–892 (2007).

    Article  CAS  Google Scholar 

  34. Wang, H. et al. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc. Natl Acad. Sci. USA 106, 3853–3858 (2009).

    Article  CAS  Google Scholar 

  35. Schneider, H. et al. Ferns diversified in the shadow of angiosperms. Nature 428, 553–557 (2004).

    Article  CAS  Google Scholar 

  36. Moreau, C. S. et al. Phylogeny of the ants: diversification in the age of angiosperms. Science 312, 101–104 (2006).

    Article  CAS  Google Scholar 

  37. Winter, M. et al. Phylogenetic diversity and nature conservation: where are we? Trends Ecol. Evol. 28, 199–204 (2013).

    Article  Google Scholar 

  38. Mazel, F. et al. Conserving phylogenetic diversity can be a poor strategy for conserving functional diversity. Syst. Biol. 66, 1019–1027 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Cavender-Bares for helpful comments and commentary. This work was supported in part by the US National Science Foundation (grant nos. EF-1115210, DBI-1547229, DBI-1458640, DEB-1442280 and DEB-1208809), the US Department of Energy (grant no. DE-SC0018247), and a seed grant from the University of Florida Biodiversity and Informatics Institutes.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in writing the manuscript.

Corresponding authors

Correspondence to Douglas E. Soltis or Robert P. Guralnick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, J.M., Folk, R.A., Soltis, P.S. et al. Biodiversity synthesis across the green branches of the tree of life. Nature Plants 5, 11–13 (2019). https://doi.org/10.1038/s41477-018-0322-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0322-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing