Review Article | Published:

Remembering winter through vernalisation

Abstract

Vernalisation is the programmed physiological process in which prolonged cold-exposure provides competency to flower in plants; widely found in winter and biennial species, such as Arabidopsis, fruit trees, vegetables and wheat. This phenomenon is regulated by diverse genetic networks, and memory of vernalisation in a life cycle mainly depends on epigenetic mechanisms. However, less is known about how to count winter-dosage for flowering in plants. Here, we compare the vernalisation genetic framework between the dicots Arabidopsis, temperate grasses, wheat, barley and Brachypodium. We discuss vernalisation mechanisms involving crosstalk between phosphorylation and O-GlcNAcylation modification of key proteins, and epigenetic modifications of the key gene VRN1 in wheat. We also highlight the potential evolutionary origins of vernalisation in various species. Current progress toward understanding the regulation of vernalisation requirements provides insight that will inform the design of molecular breeding strategies for winter crops.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Zhu, J. K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016).

  2. 2.

    Guo, X. Y., Liu, D. F. & Chong, K. Cold signaling in plants: insights into mechanisms and regulation. J. Integr. Plant Biol. 60, 745–756 (2018).

  3. 3.

    Liu, J. Y., Shi, Y. T. & Yang, S. H. Insights into the regulation of C-repeat binding factors in plant cold signaling. J. Integr. Plant Biol. 60, 780–795 (2018).

  4. 4.

    Bin Rahman, A. & Zhang, J. Preferential geographic distribution pattern of abiotic stress tolerant rice. Rice 11, 10 (2018).

  5. 5.

    Kim, H. Y., Ko, J., Kang, S. & Tenhunen, J. Impacts of climate change on paddy rice yield in a temperate climate. Glob. Change Biol. 19, 548–562 (2013).

  6. 6.

    Laudencia-Chingcuanco, D. et al. Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.). BMC Genomics 12, 299 (2011).

  7. 7.

    Morran, S. et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol. J. 9, 230–249 (2011).

  8. 8.

    Deng, W. et al. Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun. 6, 5882 (2015).

  9. 9.

    Fjellheim, S., Boden, S. & Trevaskis, B. The role of seasonal flowering responses in adaptation of grasses to temperate climates. Front Plant Sci. 5, 432 (2014).

  10. 10.

    Oliver, S. N., Deng, W., Casao, M. C. & Trevaskis, B. Low temperatures induce rapid changes in chromatin state and transcript levels of the cereal VERNALIZATION1 gene. J. Exp. Bot. 64, 2413–2422 (2013).

  11. 11.

    Chouard, P. Vernalization and its relations of dormancy. Annu. Rev. Plant Physiol. Plant Mol. Biol. 11, 191–238 (1960).

  12. 12.

    Ma, Y. et al. COLD1 confers chilling tolerance in rice. Cell 160, 1209–1221 (2015).

  13. 13.

    Zhang, Z. et al. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Dev. Cell 43, 731–743 (2017).

  14. 14.

    Fowler, D. B., Chauvin, L. P., Limin, A. E. & Sarhan, F. The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye. Theor. Appl. Genet. 93, 554–559 (1996).

  15. 15.

    Galiba, G. et al. Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci. 176, 12–19 (2009).

  16. 16.

    Shahryar, N. & Maali-Amiri, R. Metabolic acclimation of tetraploid and hexaploid wheats by cold stress-induced carbohydrate accumulation. J. Plant Physiol. 204, 44–53 (2016).

  17. 17.

    Li, Q. et al. Transcriptomic insights into phenological development and cold tolerance of wheat grown in the field. Plant Physiol. 176, 2376–2394 (2018).

  18. 18.

    Pearce, S. et al. Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theor. Appl. Genet. 126, 2683–2697 (2013).

  19. 19.

    Colton-Gagnon, K. et al. Comparative analysis of the cold acclimation and freezing tolerance capacities of seven diploid Brachypodium distachyon accessions. Ann. Bot. 113, 681–693 (2014).

  20. 20.

    Sasaki, K., Christov, N. K., Tsuda, S. & Imai, R. Identification of a novel LEA protein involved in freezing tolerance in wheat. Plant Cell Physiol. 55, 136–147 (2014).

  21. 21.

    Ying, M. & Kidou, S. Discovery of novel cold-induced CISP genes encoding small RNA-binding proteins related to cold adaptation in barley. Plant Sci. 260, 129–138 (2017).

  22. 22.

    Shrestha, R., Gomez-Ariza, J., Brambilla, V. & Fornara, F. Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Ann. Bot. 114, 1445–1458 (2014).

  23. 23.

    Andres, F. & Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627–639 (2012).

  24. 24.

    Casal, J. J. & Questa, J. I. Light and temperature cues: multitasking receptors and transcriptional integrators. New Phytol. 217, 1029–1034 (2018).

  25. 25.

    Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl Acad. Sci. USA 104, 1278–1282 (2007).

  26. 26.

    Greenup, A., Peacock, W. J., Dennis, E. S. & Trevaskis, B. The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann. Bot. 103, 1165–1172 (2009).

  27. 27.

    Distelfeld, A., Li, C. & Dubcovsky, J. Regulation of flowering in temperate cereals. Curr. Opin. Plant Biol. 12, 178–184 (2009).

  28. 28.

    Yan, L. et al. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl Acad. Sci. USA 100, 6263–6268 (2003).

  29. 29.

    Bastow, R. et al. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164–167 (2004).

  30. 30.

    Nowak, M. et al. Analysis of VRN1 gene in triticale and common wheat genetic background. Sci. Agricola 71, 380–386 (2014).

  31. 31.

    Trevaskis, B. The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Funct. Plant Biol. 37, 479–487 (2010).

  32. 32.

    Johanson, U. et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344–347 (2000).

  33. 33.

    Michaels, S. D. & Amasino, R. M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956 (1999).

  34. 34.

    Sheldon, C. C. et al. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl Acad. Sci. USA 97, 3753–3758 (2000).

  35. 35.

    Choi, K. et al. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell 23, 289–303 (2011).

  36. 36.

    Alexandre, C. M. & Hennig, L. FLC or not FLC: the other side of vernalization. J. Exp. Biol. 59, 1127–1135 (2008).

  37. 37.

    Michaels, S. D. et al. Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol. 137, 149–156 (2005).

  38. 38.

    Sheldon, C. C., Finnegan, E. J., Dennis, E. S. & Peacock, W. J. Quantitative effects of vernalization on FLC and SOC1 expression. Plant J. 45, 871–883 (2006).

  39. 39.

    Bond, D. M., Dennis, E. S. & Finnegan, E. J. Hypoxia: a novel function for VIN3. Plant Signal. Behav. 4, 773–776 (2009).

  40. 40.

    Gendall, A. R., Levy, Y. Y., Wilson, A. & Dean, C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525–535 (2001).

  41. 41.

    Levy, Y. Y. et al. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297, 243–246 (2002).

  42. 42.

    Searle, I. et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20, 898–912 (2006).

  43. 43.

    Doyle, M. R. & Amasino, R. M. A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent, rapid flowering in Arabidopsis. Plant Physiol. 151, 1688–1697 (2009).

  44. 44.

    Wood, C. C. et al. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc. Natl Acad. Sci. USA 103, 14631–14636 (2006).

  45. 45.

    Yang, H. et al. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science 357, 1142–1145 (2017).

  46. 46.

    Sung, S. & Amasino, R. M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159–164 (2004).

  47. 47.

    Bond, D. M., Dennis, E. S., Pogson, B. J. & Finnegan, E. J. Histone acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the vernalization response. Mol. Plant 2, 724–737 (2009).

  48. 48.

    Greb, T. et al. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr. Biol. 17, 73–78 (2007).

  49. 49.

    Mylne, J. S. et al. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc. Natl Acad. Sci. USA 103, 5012–5017 (2006).

  50. 50.

    Turck, F. et al. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet. 3, 855–866 (2007).

  51. 51.

    Sung, S. et al. Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat. Genet. 38, 706–710 (2006).

  52. 52.

    Yan, L. et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644 (2004).

  53. 53.

    Yan, L. et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl Acad. Sci. USA 103, 19581–19586 (2006).

  54. 54.

    Dubcovsky, J. Regulation of flowering time in wheat and barley. Comp. Biochem. Phys. A 141, 263–264 (2005).

  55. 55.

    Dhillon, T. et al. Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol. 153, 1846–1858 (2010).

  56. 56.

    Golovnina, K. A., Kondratenko, E. Y., Blinov, A. G. & Goncharov, N. P. Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats. BMC Plant Biol. 10, 168 (2010).

  57. 57.

    Ferrandiz, C., Gu, Q., Martienssen, R. & Yanofsky, M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725–734 (2000).

  58. 58.

    Konopatskaia, I. et al. VRN1 genes variability in tetraploid wheat species with a spring growth habit. BMC Plant Biol. 16, 244 (2016).

  59. 59.

    Fu, D. L. et al. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Genet. Genomics 273, 54–65 (2005).

  60. 60.

    Yan, L. et al. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 109, 1677–1686 (2004).

  61. 61.

    Muterko, A., Kalendar, R. & Salina, E. Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. BMC Plant Biol. 16, 9 (2016).

  62. 62.

    Kamran, A., Randhawa, H. S., Yang, R. C. & Spaner, D. The effect of VRN1 genes on important agronomic traits in high-yielding Canadian soft white spring wheat. Plant Breeding 133, 321–326 (2014).

  63. 63.

    Kosner, J. & Pankova, K. The detection of allelic variants at the recessive vrn loci of winter wheat. Euphytica 101, 9–16 (1998).

  64. 64.

    Shcherban, A. B., Khlestkina, E. K., Efremova, T. T. & Salina, E. A. The effect of two differentially expressed wheat VRN-B1 alleles on the heading time is associated with structural variation in the first intron. Genetica 141, 133–141 (2013).

  65. 65.

    Xing, L. et al. Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS ONE 4, e4854 (2009).

  66. 66.

    Yong, W. D. et al. Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta 217, 261–270 (2003).

  67. 67.

    Xiao, J. et al. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat. Nat. Commun. 5, 4572 (2014).

  68. 68.

    Kippes, N. et al. Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat. Mol. Genet. Genomics 289, 47–62 (2014).

  69. 69.

    Kippes, N. et al. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc. Natl Acad. Sci. USA 112, 5401–5410 (2015).

  70. 70.

    Woods, D. P. et al. Establishment of a vernalization requirement in Brachypodium distachyon requires REPRESSOR OF VERNALIZATION1. Proc. Natl Acad. Sci. USA 114, 6623–6628 (2017).

  71. 71.

    Chen, A. & Dubcovsky, J. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet. 8, e1003134 (2012).

  72. 72.

    Distelfeld, A. et al. Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol. 149, 245–257 (2009).

  73. 73.

    Dubcovsky, J. et al. Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol. Biol. 60, 469–480 (2006).

  74. 74.

    Dubcovsky, J., Chen, C. L. & Yan, L. L. Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol. Breeding 15, 395–407 (2005).

  75. 75.

    Li, Y. & Xu, M. CCT family genes in cereal crops: A current overview. Crop J. 5, 449–458 (2017).

  76. 76.

    Pin, P. A. et al. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330, 1397–1400 (2010).

  77. 77.

    Abe, M. et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056 (2005).

  78. 78.

    Li, C. & Dubcovsky, J. Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J. 55, 543–554 (2008).

  79. 79.

    Li, C., Lin, H. & Dubcovsky, J. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. Plant J. 84, 70–82 (2015).

  80. 80.

    Distelfeld, A. & Dubcovsky, J. Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels. Mol. Genet. Genomics 283, 223–232 (2010).

  81. 81.

    Hemming, M. N., Peacock, W. J., Dennis, E. S. & Trevaskis, B. Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol. 147, 355–366 (2008).

  82. 82.

    Shimada, S. et al. A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant J. 58, 668–681 (2009).

  83. 83.

    Li, C., Distelfeld, A., Comis, A. & Dubcovsky, J. Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes. Plant J. 67, 763–773 (2011).

  84. 84.

    Chen, A. et al. PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc. Natl Acad. Sci. USA 111, 10037–10044 (2014).

  85. 85.

    Pearce, S. et al. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biol. 16, 141 (2016).

  86. 86.

    Muterko, A. F., Balashova, I. A., Fayt, V. I. & Sivolap, Y. M. Molecular-genetic mechanisms of regulation of growth habit in wheat. Cytol. Genet. 49, 58–71 (2015).

  87. 87.

    Greenup, A. G. et al. ODDSOC2 Is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiol. 153, 1062–1073 (2010).

  88. 88.

    Sharma, N. et al. A Flowering Locus C homolog is a vernalization-regulated repressor in Brachypodium and is cold regulated in wheat. Plant Physiol. 173, 1301–1315 (2017).

  89. 89.

    Higgins, J. A., Bailey, P. C. & Laurie, D. A. Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS ONE 5, e10065 (2010).

  90. 90.

    Ream, T. S. et al. Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon. Plant Physiol. 164, 694–709 (2014).

  91. 91.

    Woods, D. P., Ream, T. S. & Amasino, R. M. Memory of the vernalized state in plants including the model grass Brachypodium distachyon. Front Plant Sci. 5, 99 (2014).

  92. 92.

    Woods, D. P. et al. Evolution of VRN2/Ghd7-like genes in vernalization-mediated repression of grass flowering. Plant Physiol. 170, 2124–2135 (2016).

  93. 93.

    Feng, Y., Yin, Y. & Fei, S. BdVRN1 expression confers flowering competency and is negatively correlated with freezing tolerance in Brachypodium distachyon. Front Plant Sci. 8, 1107 (2017).

  94. 94.

    Chen, L. et al. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytol. 218, 219–231 (2018).

  95. 95.

    Sung, S. Epigenetic memory of winter by plants. Integr. Comp. Biol. 54, 203 (2014).

  96. 96.

    Curtis, O. & Chang, H. The relative effectiveness of the temperature of the crown as contrasted with that of the rest of the plant upon the flowering of celery plants. Am. J. Botany, 1047–1048 (1930).

  97. 97.

    Melchers, G. Versuche zur genetik und entwicklungs-physiologie der blühreife. Biol. Zentralbl. 56, 567–570 (1936).

  98. 98.

    Crosthwaite, S. K. & Jenkins, G. I. The role of leaves in the perception of vernalizing temperatures in sugar-beet. J. Exp. Bot. 44, 801–806 (1993).

  99. 99.

    Metzger, J. D. Localization of the site of perception of thermoinductive temperatures in Thlaspi arvense L. Plant Physiol. 88, 424–428 (1988).

  100. 100.

    Wellensiek, S. J. Dividing cells as locus for vernalization. Nature 195, 307 (1962).

  101. 101.

    Wellensiek, S. J. Dividing cells as prerequisite for vernalization. Plant Physiol. 39, 832 (1964).

  102. 102.

    Sung, S. & Amasino, R. M. Vernalization and epigenetics: how plants remember winter. Curr. Opin Plant Biol. 7, 4–10 (2004).

  103. 103.

    Amasino, R. Vernalization, competence, and the epigenetic memory of winter. Plant Cell 16, 2553–2559 (2004).

  104. 104.

    Lang, A. & Melchers, G. Vernalization und devernalisation bei einer zweijahrigen pelanze. Z. Naturforsch. B 2, 444–449 (1947).

  105. 105.

    Lang, A. in Encyclopedia of Plant Physiology Vol. 15 (ed. Ruhland, W.) 1380–1536 (Springer-Verlag, Berlin, 1965).

  106. 106.

    Oliver, S. N. et al. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc. Natl Acad. Sci. USA 106, 8386–8391 (2009).

  107. 107.

    Yong, W. D. et al. Cloning and characterization of vernalization-related gene (ver203F) cDNA 3’ end. Chinese Science Bulletin 44, 1289–1294 (1999).

  108. 108.

    Berr, A. et al. SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. Plant Physiol. 151, 1476–1485 (2009).

  109. 109.

    Deal, R. B., Topp, C. N., McKinney, E. C. & Meagher, R. B. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A. Z. Plant Cell 19, 74–83 (2007).

  110. 110.

    Pien, S. et al. ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell 20, 580–588 (2008).

  111. 111.

    Hu, X. et al. Proteasome-mediated degradation of FRIGIDA modulates flowering time in Arabidopsis during vernalization. Plant Cell 26, 4763–4781 (2014).

  112. 112.

    Xiao, J. et al. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat. Genet. 49, 1546–1552 (2017).

  113. 113.

    Zhou, Y. et al. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis. Nat. Genet. 50, 638–644 (2018).

  114. 114.

    Heo, J. B., Lee, Y. S. & Sung, S. Epigenetic regulation by long noncoding RNAs in plants. Chromosome Res. 21, 685–693 (2013).

  115. 115.

    Kim, D. H. & Sung, S. The binding specificity of the PHD-finger domain of VIN3 moderates vernalization response. Plant Physiol. 173, 1258–1268 (2017).

  116. 116.

    Csorba, T., Questa, J. I., Sun, Q. & Dean, C. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc. Natl Acad. Sci. USA 111, 16160–16165 (2014).

  117. 117.

    Heo, J. B. & Sung, S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76–79 (2011).

  118. 118.

    Kim, D. H. & Sung, S. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev. Cell 40, 302–312 (2017).

  119. 119.

    Questa, J. I. et al. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization. Science 353, 485–488 (2016).

  120. 120.

    Yuan, W. et al. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nat. Genet. 48, 1527–1534 (2016).

  121. 121.

    Zhu, D., Rosa, S. & Dea, nC. Nuclear organization changes and the epigenetic silencing of FLC during vernalization. J. Mol. Biol. 427, 659–669 (2015).

  122. 122.

    Kim, D. H., Zografos, B. R. & Sung, S. Mechanisms underlying vernalization-mediated VIN3 induction in Arabidopsis. Plant Signal. Behav. 5, 1457–1459 (2010).

  123. 123.

    Velanis, C. N. & Goodrich, J. Vernalization and epigenetic inheritance: a game of histones. Curr. Biol. 27, 1324–1326 (2017).

  124. 124.

    Tao, Z. et al. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature 551, 124 (2017).

  125. 125.

    Hepworth, J. & Dean, C. Flowering Locus C’s lessons: conserved chromatin switches underpinning developmental timing and adaptation. Plant Physiol. 168, 1237–1245 (2015).

  126. 126.

    Whittaker, C. & Dean, C. The FLC Locus: a platform for discoveries in epigenetics and adaptation. Ann Rev Cell Dev. Biol. 33, 555–575 (2017).

  127. 127.

    Berry, S. et al. Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. eLife 4, e07205 (2015).

  128. 128.

    Crevillen, P. et al. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 515, 587 (2014).

  129. 129.

    Diallo, A. O. et al. Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation. Mol. Genet. Genomics 287, 575–590 (2012).

  130. 130.

    Chittock, E. C., Latwiel, S., Miller, T. & Mueller, C. W. Molecular architecture of polycomb repressive complexes. Biochem. Soc. T 45, 193–205 (2017).

  131. 131.

    Simon, J. A. & Tamkun, J. W. Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr. Opin. Genet. Dev. 12, 210–218 (2002).

  132. 132.

    Lomax, A. et al. An ortholog of CURLY LEAF/ENHANCER OF ZESTE like-1 is required for proper flowering in Brachypodium distachyon. Plant J. 93, 871–882 (2018).

  133. 133.

    Huan, Q. et al. Transcriptome-wide analysis of vernalization reveals conserved and species-specific mechanisms in Brachypodium. J. Integr. Plant Biol. 55, 696–709 (2013).

  134. 134.

    Huan, Q., Mao, Z., Chong, K. & Zhang, J. Global analysis of H3K4me3/H3K27me3 in Brachypodium distachyon reveals VRN3 as critical epigenetic regulation point in vernalization and provides insights into epigenetic memory. New Phytol. 219, 1373–1387 (2018).

  135. 135.

    Bernier, G. & Perilleux, C. A physiological overview of the genetics of flowering time control. Plant Biotechnol. J. 3, 3–16 (2005).

  136. 136.

    Trione, E. J. Metabolic changes associated with vernalization of wheat. I. carbohydrate and nitrogen patterns. Plant Physiol. 41, 277–281 (1966).

  137. 137.

    Teo, C. F., Wollaston-Hayden, E. E. & Wells, L. Hexosamine flux, the O-GlcNAc modification, and the development of insulin resistance in adipocytes. Mol. Cell Endocrinol. 318, 44–53 (2010).

  138. 138.

    Rafie, K. et al. Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. Open Biol. 7, 170078 (2017).

  139. 139.

    Nagel, A. K. & Ball, L. E. O-GlcNAc transferase and O-GlcNAcase: achieving target substrate specificity. Amino Acids 46, 2305–2316 (2014).

  140. 140.

    Hu, P., Shimoji, S. & Hart, G. W. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett. 584, 2526–2538 (2010).

  141. 141.

    Butkinaree, C., Park, K. & Hart, G. W. O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signalling and transcription in response to nutrients and stress. Biochim. Biophys. Acta 1800, 96–106 (2010).

  142. 142.

    Slawson, C. & Hart, G. W. Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation. Curr. Opin. Struct. Biol. 13, 631–636 (2003).

  143. 143.

    Olszewski, N. E., West, C. M., Sassi, S. O. & Hartweck, L. M. O-GlcNAc protein modification in plants: Evolution and function. Biochim. Biophys. Acta 1800, 49–56 (2010).

  144. 144.

    Zentella, R. et al. O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis. Genes Dev. 30, 164–176 (2016).

  145. 145.

    Zentella, R. et al. The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Nat. Chem. Biol. 13, 479–485 (2017).

  146. 146.

    Xu, S. L. et al. Proteomic analysis reveals O-GlcNAc modification on proteins with key regulatory functions in Arabidopsis. Proc. Natl Acad. Sci. USA 114, 1536–1543 (2017).

  147. 147.

    Xing, L. et al. Arabidopsis O-GlcNAc transferase SEC targets histone methyltransferase ATX1 to regulate flowering. EMBO J. 37, e98115 (2018).

  148. 148.

    Humphreys, A. M. & Linder, H. Evidence for recent evolution of cold tolerance in grasses suggests current distribution is not limited by (low) temperature. New Phytol. 198, 1261–1273 (2013).

  149. 149.

    Poethig, R. S. Phase change and the regulation of developmental timing in plants. Science 301, 334–336 (2003).

  150. 150.

    McKeown, M. et al. Evidence for an early origin of vernalization responsiveness in temperate pooideae grasses. Plant Physiol. 172, 416–426 (2016).

  151. 151.

    Christin, P. A. et al. Molecular dating, evolutionary rates, and the age of the grasses. Syst. Biol. 63, 153–165 (2014).

  152. 152.

    Zhong, J., Robbett, M., Poire, A. & Preston, J. C. Successive evolutionary steps drove Pooideae grasses from tropical to temperate regions. New Phytol. 217, 925–938 (2018).

  153. 153.

    Xue, W. et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761–767 (2008).

  154. 154.

    Woods, D. P. et al. Genetic architecture of flowering-time variation in Brachypodium distachyon. Plant Physiol. 173, 269–279 (2017).

  155. 155.

    Tsuji, H. & Taoka, K. Florigen signaling. Enzymes 35, 113–144 (2014).

  156. 156.

    Shcherban, A. B. & Salina, E. A. Evolution of VRN-1 homoeologous loci in allopolyploids of Triticum and their diploid precursors. BMC Plant Biol. 17, 188 (2017).

  157. 157.

    Weng, X. et al. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiol. 164, 735–747 (2014).

  158. 158.

    Nelson, M. N. et al. The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytol. 213, 220–232 (2017).

  159. 159.

    Ruelens, P. et al. FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nat. Commun. 4, 2280 (2013).

  160. 160.

    Vogt, S. H. et al. The FLC-like gene BvFL1 is not a major regulator of vernalization response in biennial beets. Front. Plant Sci. 5, 146 (2014).

  161. 161.

    Reeves, P. A. et al. Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 176, 295–307 (2007).

  162. 162.

    Pfeiffer, N. et al. Genetic analysis of bolting after winter in sugar beet (Beta vulgaris L.). Theor. Appl. Genet. 127, 2479–2489 (2014).

  163. 163.

    Hecht, V. et al. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23, 147–161 (2011).

  164. 164.

    Laurie, R. E. et al. The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time. Plant Physiol. 156, 2207–2224 (2011).

  165. 165.

    Putterill, J. & Varkonyi-Gasic, E. FT and florigen long-distance flowering control in plants. Curr. Opin. Plant Biol. 33, 77–82 (2016).

  166. 166.

    Turck, F., Fornara, F. & Coupland, G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573–594 (2008).

  167. 167.

    Oliva, M. et al. FIE, a nuclear PRC2 protein, forms cytoplasmic complexes in Arabidopsis thaliana. J. Exp. Bot. 67, 6111–6123 (2016).

  168. 168.

    Spillane, C. et al. Interaction of the Arabidopsis polycomb group proteins FIE and MEA mediates their common phenotypes. Curr. Biol. 10, 1535–1538 (2000).

  169. 169.

    Derkacheva, M. et al. Arabidopsis MSI1 connects LHP1 to PRC2 complexes. EMBO J. 32, 2073–2085 (2013).

  170. 170.

    Steinbach, Y. & Hennig, L. Arabidopsis MSI1 functions in photoperiodic flowering time control. Front. Plant Sci. 5, 77 (2014).

  171. 171.

    Kim, S. Y., Zhu, T. & Sung, Z. R. Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis. Plant Physiol. 152, 516–528 (2010).

  172. 172.

    Luo, M. et al. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc. Natl Acad. Sci. USA 97, 10637–10642 (2000).

  173. 173.

    Tang, X. et al. Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings. J. Exp. Bot. 63, 1391–1404 (2012).

  174. 174.

    Spillane, C. et al. Positive darwinian selection at the imprinted MEDEA locus in plants. Nature 448, 349–352 (2007).

  175. 175.

    Xu, Y. et al. Regulation of vegetative phase change by SWI2/SNF2 chromatin remodeling ATPase BRAHMA. Plant Physiol. 172, 2416–2428 (2016).

  176. 176.

    Yu, X. et al. Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc. Natl Acad. Sci. USA 105, 7618–7623 (2008).

Download references

Acknowledgements

We gratefully acknowledge funding from NSFC for the basic science centre program (31788103) and the major state basic research program of China (973).

Author information

S. X. wrote a draft of this article. K. C. designed the outline of the manuscript and polished the article.

Correspondence to Kang Chong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Life-cycle transitions of winter wheat and rice in response to seasonal changes.
Fig. 2: Comparison of the vernalisation gene-regulatory networks of Arabidopsis and wheat.
Fig. 3: Epigenetic silencing of FLC to count the duration of vernalisation.
Fig. 4: The regulatory role of the O-GlcNAc signal in vernalisation.