Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intercellular and systemic trafficking of RNAs in plants

Abstract

Plants have evolved dynamic and complex networks of cell-to-cell communication to coordinate and adapt their growth and development to a variety of environmental changes. In addition to small molecules, such as metabolites and phytohormones, macromolecules such as proteins and RNAs also act as signalling agents in plants. As information molecules, RNAs can move locally between cells through plasmodesmata, and over long distances through phloem. Non-cell-autonomous RNAs may act as mobile signals to regulate plant development, nutrient allocation, gene silencing, antiviral defence, stress responses and many other physiological processes in plants. Recent work has shed light on mobile RNAs and, in some cases, uncovered their roles in intercellular and systemic signalling networks. This review summarizes the current knowledge of local and systemic RNA movement, and discusses the potential regulatory mechanisms and biological significance of RNA trafficking in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Routes for RNA trafficking between plant cells.
Fig. 2: Schematic drawing of non-cell-autonomous RNA silencing in plants.
Fig. 3: Dynamic network of intercellular communication.

Similar content being viewed by others

References

  1. Otero, S., Helariutta, Y. & Benitez-Alfonso, Y. Symplastic communication in organ formation and tissue patterning. Curr. Opin. Plant Biol. 29, 21–28 (2016).

    Article  PubMed  Google Scholar 

  2. Kim, M., Canio, W., Kessler, S. & Sinha, N. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293, 287–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Chitwood, D. H. et al. Pattern formation via small RNA mobility. Genes Dev. 23, 549–554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, S., Sun, L. & Kragler, F. The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol. 150, 378–387 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carlsbecker, A. et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316–321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewsey, M. G. et al. Mobile small RNAs regulate genome-wide DNA methylation. Proc. Natl Acad. Sci. USA 113, E801–810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, Z. et al. Vascular-mediated signalling involved in early phosphate stress response in plants. Nat. Plants 2, 16033 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Thieme, C. J. et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants 1, 15025 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, G., LeBlanc, M. L., Wafula, E. K., dePamphilis, C. W. & Westwood, J. H. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345, 808–811 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, Y. et al. Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC Plant Biol. 15, 251 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Brunkard, J. O., Runkel, A. M. & Zambryski, P. C. The cytosol must flow: intercellular transport through plasmodesmata. Curr. Opin. Cell Biol. 35, 13–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Cantrill, L. C., Overall, R. L. & Goodwin, P. B. Cell-to-cell communication via plant endomembranes. Cell Biol. Int. 23, 653–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Barton, D. A. et al. Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J. 66, 806–817 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Grabski, S., De Feijter, A. W. & Schindler, M. Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5, 25–38 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jackson, D. Plasmodesmata spread their influence. F1000 Prime Rep. 7, 25 (2015).

    Article  CAS  Google Scholar 

  16. Lee, J. Y. Plasmodesmata: a signaling hub at the cellular boundary. Curr. Opin. Plant Biol. 27, 133–140 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sager, R. & Lee, J. Y. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. J. Exp. Bot. 65, 6337–6358 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oparka, K. J. et al. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97, 743–754 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Crawford, K. M. & Zambryski, P. C. Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states. Plant Physiol. 125, 1802–1812 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burch-Smith, T. M., Stonebloom, S., Xu, M. & Zambryski, P. C. Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248, 61–74 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Haywood, V., Kragler, F. & Lucas, W. J. Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14, S303–325 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Levy, A., Erlanger, M., Rosenthal, M. & Epel, B. L. A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J. 49, 669–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Kuhn, C., Franceschi, V. R., Schulz, A., Lemoine, R. & Frommer, W. B. Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275, 1298–1300 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Lucas, W. J. et al. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270, 1980–1983 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Notaguchi, M. & Okamoto, S. Dynamics of long-distance signaling via plant vascular tissues. Front. Plant Sci. 6, 161 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Bel, A. J. Interaction between sieve element and companion cell and the consequences for photoassimilate distribution. Two structural hardware frames with associated physiological software packages in dicotyledons? J. Exp. Botany 47, 1129–1140 (1996).

    Article  Google Scholar 

  27. Heo, J. O., Roszak, P., Furuta, K. M. & Helariutta, Y. Phloem development: current knowledge and future perspectives. Am. J. Bot. 101, 1393–1402 (2014).

    Article  PubMed  Google Scholar 

  28. Ostendorp, A. et al. Functional analysis of Brassica napus phloem protein and ribonucleoprotein complexes. New Phytol. 214, 1188–1197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A. & Kehr, J. Towards the proteome of Brassica napus phloem sap. Proteomics 6, 896–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Doering-Saad, C., Newbury, H. J., Bale, J. S. & Pritchard, J. Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J. Exp. Bot. 53, 631–637 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Sasaki, T., Chino, M., Hayashi, H. & Fujiwara, T. Detection of several mRNA species in rice phloem sap. Plant Cell Physiol. 39, 895–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Guo, S. et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 45, 51–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Rabouille, C. Pathways of unconventional protein secretion. Trends Cell Biol. 27, 230–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell. Dev. Biol. 30, 255–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Regente, M. et al. Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. FEBS Lett. 583, 3363–3366 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Prado, N. et al. Nanovesicles are secreted during pollen germination and pollen tube growth: a possible role in fertilization. Mol. Plant 7, 573–577 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Rutter, B. D. & Innes, R. W. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol. 173, 728–741 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. An, Q., Huckelhoven, R., Kogel, K. H. & van Bel, A. J. Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell. Microbiol. 8, 1009–1019 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Takemoto, D., Jones, D. A. & Hardham, A. R. GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J. 33, 775–792 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Lu, Y. J. et al. Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell. Microbiol. 14, 682–697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai, Q. et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 8, 1126–1129 (2018).

    Article  CAS  Google Scholar 

  42. Deeken, R. et al. Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J. 55, 746–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Gaupels, F. et al. Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. J. Exp. Bot. 59, 3297–3306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruiz-Medrano, R., Xoconostle-Cazares, B. & Lucas, W. J. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405–4419 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Omid, A., Keilin, T., Glass, A., Leshkowitz, D. & Wolf, S. Characterization of phloem-sap transcription profile in melon plants. J. Exp. Bot. 58, 3645–3656 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Doering-Saad, C., Newbury, H. J., Couldridge, C. E., Bale, J. S. & Pritchard, J. A phloem-enriched cDNA library from Ricinus: insights into phloem function. J. Exp. Bot. 57, 3183–3193 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez-Medina, C., Atkins, C. A., Mann, A. J., Jordan, M. E. & Smith, P. M. Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.). BMC Plant Biol. 11, 36 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Notaguchi, M., Wolf, S. & Lucas, W. J. Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture. J. Integr. Plant Biol. 54, 760–772 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Xoconostle-Cazares, B. et al. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283, 94–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Banerjee, A. K. et al. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18, 3443–3457 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mahajan, A., Bhogale, S., Kang, I. H., Hannapel, D. J. & Banerjee, A. K. The mRNA of a Knotted1-like transcription factor of potato is phloem mobile. Plant Mol. Biol. 79, 595–608 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Kanehira, A. et al. Apple phloem cells contain some mRNAs transported over long distances. Tree Genet. Genom. 6, 635–642 (2010).

    Article  Google Scholar 

  53. Roney, J. K., Khatibi, P. A. & Westwood, J. H. Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiol. 143, 1037–1043 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. David-Schwartz, R., Runo, S., Townsley, B., Machuka, J. & Sinha, N. Long-distance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in. Cuscuta. New Phytol. 179, 1133–1141 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Goldschmidt, E. E. Plant grafting: new mechanisms, evolutionary implications. Front. Plant Sci. 5, 727 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lu, K. J., Huang, N. C., Liu, Y. S., Lu, C. A. & Yu, T. S. Long-distance movement of Arabidopsis FLOWERING LOCUS T RNA participates in systemic floral regulation. RNA Biol. 9, 653–662 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, H. et al. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytol. 217, 799–812 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Notaguchi, M., Higashiyama, T. & Suzuki, T. Identification of mRNAs that move over long distances using an RNA-Seq analysis of Arabidopsis/Nicotiana benthamiana heterografts. Plant Cell Physiol. 56, 311–321 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. LeBlanc, M., Kim, G., Patel, B., Stromberg, V. & Westwood, J. Quantification of tomato and Arabidopsis mobile RNAs trafficking into the parasitic plant Cuscuta pentagona. New Phytol. 200, 1225–1233 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Bologna, N. G. & Voinnet, O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in. Arabidopsis. Annu. Rev. Plant Biol. 65, 473–503 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Rogers, K. & Chen, X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25, 2383–2399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Molnar, A., Melnyk, C. & Baulcombe, D. C. Silencing signals in plants: a long journey for small RNAs. Genome Biol. 12, 215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, Y. J., Maizel, A. & Chen, X. Traffic into silence: endomembranes and post-transcriptional RNA silencing. EMBO J. 33, 968–980 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Palauqui, J. C., Elmayan, T., Pollien, J. M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738–4745 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Voinnet, O. & Baulcombe, D. C. Systemic signalling in gene silencing. Nature 389, 553 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Voinnet, O., Vain, P., Angell, S. & Baulcombe, D. C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Palauqui, J. C. & Balzergue, S. Activation of systemic acquired silencing by localised introduction of DNA. Curr. Biol. 9, 59–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Melnyk, C. W., Molnar, A. & Baulcombe, D. C. Intercellular and systemic movement of RNA silencing signals. EMBO J. 30, 3553–3563 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dunoyer, P., Himber, C., Ruiz-Ferrer, V., Alioua, A. & Voinnet, O. Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nat. Genet. 39, 848–856 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Smith, L. M. et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19, 1507–1521 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yoo, B. C. et al. A systemic small RNA signaling system in plants. Plant Cell 16, 1979–2000 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Buhtz, A., Springer, F., Chappell, L., Baulcombe, D. C. & Kehr, J. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 53, 739–749 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Buhtz, A., Pieritz, J., Springer, F. & Kehr, J. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol. 10, 64 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Varkonyi-Gasic, E., Gould, N., Sandanayaka, M., Sutherland, P. & MacDiarmid, R. M. Characterisation of microRNAs from apple (Malus domestica ‘Royal Gala’) vascular tissue and phloem sap. BMC Plant Biol. 10, 159 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martinez, G., Panda, K., Kohler, C. & Slotkin, R. K. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat. Plants 2, 16030 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Molnar, A. et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328, 872–875 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Melnyk, C. W., Molnar, A., Bassett, A. & Baulcombe, D. C. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr. Biol. 21, 1678–1683 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, W. et al. Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers. Plant J. 80, 106–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Parizotto, E. A., Dunoyer, P., Rahm, N., Himber, C. & Voinnet, O. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev. 18, 2237–2242 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alvarez, J. P. et al. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18, 1134–1151 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Knauer, S. et al. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev. Cell 24, 125–132 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Pant, B. D., Buhtz, A., Kehr, J. & Scheible, W. R. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53, 731–738 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lin, S. I. et al. Regulatory network of microRNA399 and PHO2 by systemic signalling. Plant Physiol. 147, 732–746 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huen, A. K., Rodriguez-Medina, C., Ho, A. Y., Atkins, C. A. & Smith, P. M. Long-distance movement of phosphate starvation-responsive microRNAs in. Arabidopsis. Plant Biol. 19, 643–649 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Tsikou, D. et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science http://doi.org/ct72 (2018).

  87. Shahid, S. et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553, 82–85 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, T. et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. Plants 2, 16153 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Kragler, F. RNA in the phloem: A crisis or a return on investment? Plant Sci. 178, 99–104 (2010).

    Article  CAS  Google Scholar 

  90. Zhang, W. et al. tRNA-related sequences trigger systemic mRNA transport in plants. Plant Cell 28, 1237–1249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Calderwood, A., Kopriva, S. & Morris, R. J. Transcript abundance explains mRNA mobility data in Arabidopsis thaliana. Plant Cell 28, 610–615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Paultre, D. S., Gustin, M. P., Molnar, A. & Oparka, K. J. Lost in transit: long-distance trafficking and phloem unloading of protein signals in Arabidopsis homografts. Plant Cell 28, 2016–2025 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Westwood, J. H. RNA transport: Delivering the message. Nat. Plants 1, 15038 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Banerjee, A. K., Lin, T. & Hannapel, D. J. Untranslated regions of a mobile transcript mediate RNA metabolism. Plant Physiol. 151, 1831–1843 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Carella, P., Wilson, D. C., Kempthorne, C. J. & Cameron, R. K. Vascular sap proteomics: Providing insight into long-distance signaling during stress. Front. Plant Sci. 7, 651 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gomez, G., Torres, H. & Pallas, V. Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. Plant J. 41, 107–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Ham, B. K. et al. A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21, 197–215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cho, S. K. et al. Polypyrimidine tract-binding proteins of potato mediate tuberization through an interaction with StBEL5 RNA. J. Exp. Bot. 66, 6835–6847 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ham, B. K., Li, G., Jia, W., Leary, J. A. & Lucas, W. J. Systemic delivery of siRNA in pumpkin by a plant PHLOEM SMALL RNA-BINDING PROTEIN 1-ribonucleoprotein complex. Plant J. 80, 683–694 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Sevilem, I., Yadav, S. R. & Helariutta, Y. Plasmodesmata: channels for intercellular signaling during plant growth and development. Methods Mol. Biol. 1217, 3–24 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Balachandran, S., Xiang, Y., Schobert, C., Thompson, G. A. & Lucas, W. J. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc. Natl Acad. Sci. USA 94, 14150–14155 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Aoki, K., Kragler, F., Xoconostle-Cazares, B. & Lucas, W. J. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc. Natl Acad. Sci. USA 99, 16342–16347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vaten, A. et al. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21, 1144–1155 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Grison, M. S., Fernandez-Calvino, L., Mongrand, S. & Bayer, E. M. Isolation of plasmodesmata from Arabidopsis suspension culture cells. Methods Mol. Biol. 1217, 83–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. de Felippes, F. F., Ott, F. & Weigel, D. Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana. Nucleic Acids Res. 39, 2880–2889 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Skopelitis, D. S. et al. Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional signals. Nat. Commun. 9, 3107 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Haywood, V., Yu, T. S., Huang, N. C. & Lucas, W. J. Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J. 42, 49–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Skopelitis, D. S., Benkovics, A. H., Husbands, A. Y. & Timmermans, M. C. P. Boundary formation through a direct threshold-based readout of mobile small RNA gradients. Dev. Cell 43, 265–273 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Ghate, T. H., Sharma, P., Kondhare, K. R., Hannapel, D. J. & Banerjee, A. K. The mobile RNAs, StBEL11 and StBEL29, suppress growth of tubers in potato. Plant Mol. Biol. 93, 563–578 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Dunoyer, P., Melnyk, C., Molnar, A. & Slotkin, R. K. Plant mobile small RNAs. Cold Spring Harb. Perspect. Biol. 5, a017897 (2013).

    PubMed  Google Scholar 

  111. Sarkies, P. & Miska, E. A. Small RNAs break out: the molecular cell biology of mobile small RNAs. Nat. Rev. Mol. Cell Biol. 15, 525–535 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Weiberg, A. & Jin, H. Small RNAs--the secret agents in the plant-pathogen interactions. Curr. Opin. Plant Biol. 26, 87–94 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Melnyk, C. W. & Meyerowitz, E. M. Plant grafting. Curr. Biol. 25, 183–188 (2015).

    Article  CAS  Google Scholar 

  114. Yoder, J. I., Gunathilake, P., Wu, B., Tomilova, N. & Tomilov, A. A. Engineering host resistance against parasitic weeds with RNA interference. Pest Manag. Sci. 65, 460–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Guan, D. et al. PlaMoM: a comprehensive database compiles plant mobile macromolecules. Nucleic Acids Res. 45, 1021–1028 (2017).

    Article  CAS  Google Scholar 

  116. Luo, K. R., Huang, N. C. & Yu, T. S. Selective targeting of mobile mRNAs to plasmodesmata for cell-to-cell movement. Plant Physiol. http://doi.org/gdrsfz (2018).

Download references

Acknowledgements

We apologize for not being able to discuss or cite many studies due to limited space. Research in the Liu and Chen labs is supported by National Key Research and Development Program of China (91740202), National Institutes of Health (GM061146), Guangdong Innovation Research Team Fund (2014ZT05S078), National Science Foundation (IOS-1340001) and National Natural Science Foundation of China (31600982).

Author information

Authors and Affiliations

Authors

Contributions

L. L. and X. C. wrote this article.

Corresponding author

Correspondence to Xuemei Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Chen, X. Intercellular and systemic trafficking of RNAs in plants. Nature Plants 4, 869–878 (2018). https://doi.org/10.1038/s41477-018-0288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0288-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing