Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis

Abstract

RNA polymerase II (Pol II) plays an essential role in gene expression. We used plant native elongating transcript sequencing and global run-on sequencing to profile nascent RNAs genome wide in Arabidopsis. We found that Pol II tends to accumulate downstream of the transcription start site (TSS). Moreover, Pol II with an unphosphorylated carboxyl-terminal domain (CTD) mainly accumulates downstream of the TSS, while Pol II with a Ser 5P CTD associates with spliceosomes, and Pol II with a Ser 2P CTD presents a sharp peak within 250 base pairs downstream of the polyadenylation site (PAS). Pol II pausing both at promoter-proximal regions and after PAS affects the transcription rate. Interestingly, active genes can be classified into three clusters based on the different modes of transcription. We demonstrate that these two methods are suitable to study Pol II dynamics in planta. Although transcription is conserved overall within eukaryotes, there is plant-specific regulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Establishment of GRO-seq and pNET-seq in Arabidopsis.
Fig. 2: Meta-analyses of Pol II-associated nascent RNA.
Fig. 3: Pausing at the promoter-proximal region as a regulatory step for transcription.
Fig. 4: Ser 5P Pol II is involved in cotranscriptional splicing.
Fig. 5: Phosphorylated Pol II pauses within a narrow region downstream of the PAS.
Fig. 6: Three clusters of genes defined by the patterns of unph, Ser 2P, and Ser 5P Pol II.
Fig. 7: Comparison of Pol II activity between Arabidopsis and humans.

Similar content being viewed by others

Data availability

The sequencing data and processed files are available at the Gene Expression Omnibus under accession numbers GSE109974 and GSE117014.

References

  1. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  Google Scholar 

  2. Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).

    Article  CAS  Google Scholar 

  3. Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    Article  CAS  Google Scholar 

  4. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    Article  CAS  Google Scholar 

  5. Schwalb, B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225–1228 (2016).

    Article  CAS  Google Scholar 

  6. Harlen, K. M. & Churchman, L. S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 18, 263–273 (2017).

    Article  CAS  Google Scholar 

  7. Nojima, T. et al. Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161, 526–540 (2015).

    Article  CAS  Google Scholar 

  8. Zhu, J.-K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016).

    Article  CAS  Google Scholar 

  9. Singh, K. B., Foley, R. C. & Oñate-Sánchez, L. Transcription factors in plant defense and stress responses. Curr. Opin. Plant. Biol. 5, 430–436 (2002).

    Article  CAS  Google Scholar 

  10. Erhard, K. F., Talbot, J.-E. R. B., Deans, N. C., McClish, A. E. & Hollick, J. B. Nascent transcription affected by RNA polymerase IV in Zea mays. Genetics 199, 1107–1125 (2015).

    Article  CAS  Google Scholar 

  11. Hetzel, J., Duttke, S. H., Benner, C. & Chory, J. Nascent RNA sequencing reveals distinct features in plant transcription. Proc. Natl Acad. Sci. USA 113, 12316–12321 (2016).

    Article  CAS  Google Scholar 

  12. Liu, W. et al. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. Nat. Plants 4, 181–188 (2018).

    Article  CAS  Google Scholar 

  13. Liu, C. et al. Arabidopsis ARGONAUTE 1 binds chromatin to promote gene transcription in response to hormones and stresses. Dev. Cell 44, 1–14 (2018).

    Article  Google Scholar 

  14. Hawley, D. K. & Roeder, R. G. Separation and partial characterization of three functional steps in transcription initiation by human RNA polymerase II. J. Biol. Chem. 260, 8163–8172 (1985).

    CAS  PubMed  Google Scholar 

  15. Rougvie, A. E. & Lis, J. T. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795–804 (1988).

    Article  CAS  Google Scholar 

  16. Folta, K. M. & Kaufman, L. S. Isolation of Arabidopsis nuclei and measurement of gene transcription rates using nuclear run-on assays. Nat. Protoc. 1, 3094–3100 (2006).

    Article  CAS  Google Scholar 

  17. Core, LeightonJ. et al. Defining the status of RNA polymerase at promoters. Cell Reports 2, 1025–1035 (2012).

    Article  CAS  Google Scholar 

  18. Schlackow, M. et al. Distinctive patterns of transcription and RNA processing for human lincRNAs. Mol. Cell 65, 25–38 (2017).

    Article  CAS  Google Scholar 

  19. Liu, Y. et al. PCSD: a plant chromatin state database. Nucleic Acids Res. 46, D1157–D1167 (2018).

    Article  Google Scholar 

  20. Hajheidari, M., Koncz, C. & Eick, D. Emerging roles for RNA polymerase II CTD in Arabidopsis. Trends Plant Sci. 18, 633–643 (2013).

    Article  CAS  Google Scholar 

  21. Zhang, B. et al. C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast. Proc. Natl Acad. Sci. USA 113, E8197–E8206 (2016).

    Article  CAS  Google Scholar 

  22. Lin, J., Xu, R., Wu, X., Shen, Y. & Li, Q. Q. Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination. Plant J. 91, 829–839 (2017).

    Article  CAS  Google Scholar 

  23. Li, F. et al. Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity. Cell Host Microbe. 16, 748–758 (2014).

    Article  CAS  Google Scholar 

  24. Li, G. et al. ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis. Plant J. 78, 706–714 (2014).

    Article  CAS  Google Scholar 

  25. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    Article  CAS  Google Scholar 

  26. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  27. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  Google Scholar 

  28. Kurtz, S., Narechania, A., Stein, J. C. & Ware, D. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genom. 9, 517 (2008).

    Article  Google Scholar 

  29. Bushnell, B. BBMap: A Fast, Accurate, Splice-aware Aligner Report No. LBNL-7065E (Lawrence Berkeley National Laboratory, 2014).

  30. Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.8 https://CRAN.R-project.org/package=pheatmap (2015).

  31. Hennig, C. fpc: Flexible Procedures for Clustering. R package version 2.1-10 https://CRAN.R-project.org/package=fpc (2015).

  32. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  Google Scholar 

  33. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  Google Scholar 

  34. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  Google Scholar 

  35. Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the General Programme of the National Natural Science Foundation of China (grant numbers 31471165 and 31271318) and the Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Chinese Academy of Sciences, to Z.D.

Author information

Authors and Affiliations

Authors

Contributions

Z.D. designed the research. J.Z. and X.L. performed experiments. M.L. analysed data. Z.D., M.L. and J.Z. wrote the manuscript.

Corresponding author

Correspondence to Zhicheng Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–12 and Supplementary Tables 1–4.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Liu, M., Liu, X. et al. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. Nature Plants 4, 1112–1123 (2018). https://doi.org/10.1038/s41477-018-0280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0280-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing