Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PtdIns(3,5)P2 mediates root hair shank hardening in Arabidopsis

An Author Correction to this article was published on 01 April 2019

This article has been updated


Root hairs elongate by tip growth and simultaneously harden the shank by constructing the inner secondary cell wall layer. While much is known about the process of tip growth1, almost nothing is known about the mechanism by which root hairs harden the shank. Here we show that phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), the enzymatic product of FORMATION OF APLOID AND BINUCLEATE CELLS 1 (FAB1), is involved in the hardening of the shank in root hairs in Arabidopsis. FAB1 and PtdIns(3,5)P2 localize to the plasma membrane along the shank of growing root hairs. By contrast, phosphatidylinositol 4-phosphate 5-kinase 3 (PIP5K3) and PtdIns(4,5)P2 localize to the apex of the root hair where they are required for tip growth. Reduction of FAB1 function results in the formation of wavy root hairs while those of the wild type are straight. The localization of FAB1 in the plasma membrane of the root hair shank requires the activity of Rho-related GTPases from plants 10 (ROP10) and localization of ROP10 requires FAB1 activity. Computational modelling of root hair morphogenesis successfully reproduces the wavy root hair phenotype. Taken together, these data demonstrate that root hair shank hardening requires PtdIns(3,5)P2/ROP10 signalling.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: FAB1A and PIP5K3 and their enzymatic products, PtdIns(3,5)P2 and PtdIns(4,5)P2, exclusively localized to the plasma membrane of the shank and apex of elongating root hair respectively, and reduced FAB1 function caused a wavy root hair shape.
Fig. 2: The stiffness of the root hair shank, the deposition of xylan and the organization of the cortical microtubule array of the root hair were affected by reduced FAB1A and FAB1B expression.
Fig. 3: ROP10 controls root hair shank formation.
Fig. 4: ROP10 specifically interacts with FAB1A in root hair cells, and they determine the shank PM localization of each other.

Data availability

All data appearing in this study are available from the authors upon reasonable request.

Change history

  • 01 April 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. Grierson, C., Nielsen, E., Ketelaarc, T. & Schiefelbein, J. Root hairs. The Arabidopsis Book 12, e0172 (2014).

    Article  Google Scholar 

  2. Xu, T. et al. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143, 99–110 (2010).

    CAS  Article  Google Scholar 

  3. Akkerman, M. et al. Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana, Medicago truncatula and Vicia sativa. J. Microsc. 247, 60–67 (2012).

    CAS  Article  Google Scholar 

  4. Campanoni, P. & Blatt, M. R. Membrane trafficking and polar growth in root hairs and pollen tubes. J. Exp. Bot. 58, 65–74 (2007).

    CAS  Article  Google Scholar 

  5. Feiguelman, G., Fu, Y. & Yalovsky, S. ROP GTPases structure–function and signaling pathways. Plant Physiol. 176, 57–79 (2018).

    CAS  Article  Google Scholar 

  6. Gerth, K. et al. Guilt by association: a phenotype-based view of the plant phosphoinositide network. Annu. Rev. Plant Biol. 68, 349–374 (2017).

    CAS  Article  Google Scholar 

  7. Yalovsky, S., Bloch, D., Sorek, N. & Kost, B. Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. Plant Physiol. 147, 1527–1543 (2008).

    CAS  Article  Google Scholar 

  8. Jones, M. A. et al. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14, 763–776 (2002).

    CAS  Article  Google Scholar 

  9. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  Google Scholar 

  10. Kusano, H. et al. The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20, 367–380 (2008).

    CAS  Article  Google Scholar 

  11. Braun, M., Baluska, F., von Witsch, M. & Menzel, D. Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209, 435–443 (1999).

    CAS  Article  Google Scholar 

  12. Serrazina, S., Dias, F. V. & Malhó, R. Characterization of FAB1 phosphatidylinositol kinases in Arabidopsis pollen tube growth and fertilization. New Phytologist 203, 784–793 (2014).

    CAS  Article  Google Scholar 

  13. Hirano, T., Stecker, K., Munnik, T., Xu, H. & Sato, M. H. Visualization of phosphatidylinositol 3,5-bisphosphate dynamics by a tandem ML1N-based fluorescent protein probe in Arabidopsis. Plant Cell Physiol. 58, 1185–1195 (2017).

    CAS  Article  Google Scholar 

  14. Stenzel, I., Ischebeck, T. & Ko, S. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20, 124–141 (2008).

    CAS  Article  Google Scholar 

  15. Simon, M. L. A. et al. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J. 77, 322–337 (2014).

    CAS  Article  Google Scholar 

  16. Park, S., Szumlanski, A. L., Gu, F., Guo, F. & Nielsen, E. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nat. Cell Biol. 13, 973–980 (2011).

    CAS  Article  Google Scholar 

  17. Blake, A. W. et al. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J. Biol. Chem. 281, 29321–29329 (2006).

    CAS  Article  Google Scholar 

  18. Larson, E. R., Tierney, M. L., Tinaz, B. & Domozych, D. S. Using monoclonal antibodies to label living root hairs: a novel tool for studying cell wall microarchitecture and dynamics in Arabidopsis. Plant Methods 10, 30 (2014).

    Article  Google Scholar 

  19. Oda, Y. & Fukuda, H. Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337, 1333–1336 (2012).

    CAS  Article  Google Scholar 

  20. Hogetsu, T. Detection of hemicelluloses specific to the cell wall of tracheary elements and phloem cells by fluorescein-conjugated lectins. Protoplasma 156, 67–73 (1990).

    CAS  Article  Google Scholar 

  21. Bibikova, T. N., Blancaflor, E. B. & Gilroy, S. Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J. 17, 657–665 (1999).

    CAS  Article  Google Scholar 

  22. Hirano, T., Munnik, T. & Sato, M. H. Phosphatidylinositol 3-phosphate 5-kinase, FAB1/PIKfyve kinase mediates endosome maturation to establish endosome–cortical microtubule interaction in Arabidopsis. Plant Physiol. 169, 1961–1974 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Komaki, S. et al. Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J. Cell. Sci. 123, 451–459 (2010).

    CAS  Article  Google Scholar 

  24. Jones, M. A. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14, 763–776 (2002).

    CAS  Article  Google Scholar 

  25. Fu, Y., Gu, Y., Zheng, Z., Wasteneys, G. & Yang, Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120, 687–700 (2005).

    CAS  Article  Google Scholar 

  26. Higaki, T. et al. Exogenous cellulase switches cell interdigitation to cell elongation in an RIC1-dependent manner in Arabidopsis thaliana cotyledon pavement cells. Plant Cell Physiol. 58, 106–119 (2017).

    CAS  PubMed  Google Scholar 

  27. Takigawa-Imamura, H., Morita, R., Iwaki, T., Tsuji, T. & Yoshikawa, K. Tooth germ invagination from cell-cell interaction: Working hypothesis on mechanical instability. J. Theor. Biol. 382, 284–291 (2015).

    Article  Google Scholar 

  28. Nakagawa, T. et al. Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 71, 2095–2100 (2007).

    CAS  Article  Google Scholar 

  29. Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133 (2006).

    CAS  Article  Google Scholar 

  30. Zuo, J., Niu, Q. W. & Chua, N. H. Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273 (2000).

    CAS  Article  Google Scholar 

  31. Hirano, T., Matsuzawa, T., Takegawa, K. & Sato, M. H. Loss-of-function and gain-of-function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in Arabidopsis. Plant Physiol. 155, 797–807 (2011).

    CAS  Article  Google Scholar 

  32. Shimada, T. L., Shimada, T. & Hara-Nishimura, I. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 61, 519–528 (2010).

    CAS  Article  Google Scholar 

  33. Ichikawa, M. et al. Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana. Plant Cell Physiol. 55, 790–800 (2014).

    CAS  Article  Google Scholar 

  34. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    CAS  Article  Google Scholar 

  35. Marc, J. et al. A GFP – MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10, 1927–1940 (2006).

    Google Scholar 

  36. Becker, J. D., Takeda, S., Borges, F., Dolan, L. & Feijó, J. A. Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature. BMC Plant Biol. 14, 197 (2014).

    Article  Google Scholar 

  37. Ueda, H. et al. Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc. Natl Acad. Sci. USA 107, 6894–6899 (2010).

    CAS  Article  Google Scholar 

  38. Higaki, T., Kutsuna, N., Sano, T., Kondo, N. & Hasezawa, S. Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J. 61, 156–165 (2010).

    CAS  Article  Google Scholar 

  39. Dou, L., He, K., Higaki, T., Wang, X. A. & Mao, T. Ethylene signaling modulates cortical microtubule reassembly in response to salt stress. Plant Physiol. 176, 2071–2081 (2018).

    CAS  Article  Google Scholar 

  40. Ando, T. et al. A high-speed atomic force microscope for studying biological macromolecules in action. ChemPhysChem 4, 1196–1202 (2003).

    CAS  Article  Google Scholar 

  41. Ando, T., Uchihashi, T. & Fukuma, T. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci. 83, 337–437 (2008).

    CAS  Article  Google Scholar 

  42. Butt, H.-J. & Jaschke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology. 6, 1–7 (1995).

    Article  Google Scholar 

  43. Cozier, G. E. et al. The phox homology (PX) domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J. Biol. Chem. 277, 48730–48736 (2002).

    CAS  Article  Google Scholar 

  44. Morag, E. et al. Expression, purification, and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl. Environ. Microbiol. 61, 1980–1986 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. de Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008).

    Article  Google Scholar 

Download references


We thank T. Miura (Kyushu University, Japan) for his helpful comments on the computational model, T. Nakagawa (Shimane University, Japan) for providing pGWB vectors, C. Ambrose (University of Saskatchewan, Canada) for providing the GFP–MBD-expressing line, T. Hashimoto (NAIST, Japan) for providing the EB1b–GFP-expression line, Y. Jailais (Université de Lyon, France) for providing the CITRINE–2:PHPLC-expressing line and fruitful discussion, and Y. Oda (National Institute for Genetics, Japan) and S. Sakamoto and N. Mitsuda (National Institute of Advanced Industrial Science and Technology, Japan) for fruitful discussion about cell wall components. We thank T. Ando and N. Kodera (Kanazawa University) for providing us with experimental instruments, and T. Nakayama-Watanabe for critical suggestions for data analysis. We also thank K. Tamura and I. Hara-Nishimura (Kyoto University) for fruitful discussion. This work was supported by JSPS KAKENHIJP16H05068 to M.H.S., JP17K08200 to T. Hirano, JP18K06260 to H.T.-I, JP16K06260 to T.A., 16KT0170 to T.A., 17K15238 to M.K., JP16H06280, 17K19380, 18H05492, a Grant for Basic Science Research Projects from The Sumitomo Foundation (160146), and a Grant from The Canon Foundation to T. Higaki, Marie Curie Actions; Incoming Interaction Fellowship (ID: 022275) to S.T.

Author information

Authors and Affiliations



T. Hirano, M.K., T.A. and M.H.S. conceived and designed the study. T. Hirano and S.T. performed the experiments. H.K. performed AFM. H.T.-I. and T. Higaki performed the mathematical modelling. T. Hirano, S.T., L.D., M.K., T.A., T. Higaki, H.T.-I. and M.H.S. analysed the data. T. Hirano, H.T-I., L.D. and M.H.S. wrote the manuscript. M.H.S. supervised the project.

Corresponding author

Correspondence to Masa H. Sato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–19 and Supplementary Video legends.

Reporting Summary

Supplementary Table 1

List of materials used for this study.

Supplementary Video 1

Time lapse images PI(3,5)P2 and PI(4,5)P2 fluorescence of initiation step of root hair elongation.

Supplementary Video 2

Time lapse images PtdIns(3,5)P2 and PtdIns(4,5)P2 fluorescence of elongating step of root hair.

Supplementary Video 3

Time lapse images PtdIns(3,5)P2 and PtdIns(4,5)P2 fluorescence of termination step of root hair elongation.

Supplementary Video 4

Computer simulation of the growing process of the wild type root hair in the air.

Supplementary Video 5

Computer simulation of the growing process of the wild type root hair in the gel.

Supplementary Video 6

Computer simulation of the wavy root hair in the air.

Supplementary Video 7

Computer simulation of the wavy root hair in the gel.

Supplementary Video 8

Computer simulation of the swollen root hair in the air.

Supplementary Video 9

Computer simulation of the swollen root hair in the gel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hirano, T., Konno, H., Takeda, S. et al. PtdIns(3,5)P2 mediates root hair shank hardening in Arabidopsis. Nature Plants 4, 888–897 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing