A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens

Abstract

Photosystem I of the moss Physcomitrella patens has special properties, including the capacity to undergo non-photochemical fluorescence quenching. We studied the organization of photosystem I under different light and carbon supply conditions in wild-type moss and in moss with the lhcb9 (light-harvesting complex) knockout genotype, which lacks an antenna protein endowed with red-shifted absorption forms. Wild-type moss, when grown on sugars and in low light, accumulated LHCB9 proteins and a large form of the photosystem I supercomplex, which, besides the canonical four LHCI subunits, included a LHCII trimer and four additional LHC monomers. The lhcb9 knockout produced an angiosperm-like photosystem I supercomplex with four LHCI subunits irrespective of the growth conditions. Growth in the presence of sublethal concentrations of electron transport inhibitors that caused oxidation or reduction of the plastoquinone pool prevented or promoted, respectively, the accumulation of LHCB9 and the formation of the photosystem I megacomplex. We suggest that LHCB9 is a key subunit regulating the antenna size of photosystem I and the ability to avoid the over-reduction of plastoquinone: this condition is potentially dangerous in the shaded and sunfleck-rich environment typical of mosses, whose plastoquinone pool is reduced by both photosystem II and the oxidation of sugar substrates.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Distribution of LHCB9 in different domains of thylakoid membranes.
Fig. 2: LHCB9 localization among pigment-binding complexes.
Fig. 3: Spectroscopy analysis and polypeptide composition of PSI–LHCI-Mega.
Fig. 4: Proteomic analysis of PSI-LHCI and PSI-LHCI Mega
Fig. 5: Architecture of PSI supercomplexes from P. patens revealed by single particle electron microscopy.
Fig. 6: LHCB9 expression in different light intensity and glucose concentrations.
Fig. 7: LHCB9 expression during moss development.

Data availability

Genomic sequence data from this article can be found in the GenBank/EMBL data libraries (https://www.ncbi.nlm.nih.gov/refseq/) and Phytozome v.12.1.6 (Plant Comparative Genomics portal of the Department of Energy’s Joint Genome Institute) (https://phytozome.jgi.doe.gov/pz/portal.html) under the following accession numbers: XM_001756491 (Pp1s252_28V6.1) for lhcb9.1 and XM_001779101 (Pp1s23_96V6.2) for lhcb9.2. Protein sequence data identified by MS can be found in the online database UniProt (https://www.uniprot.org/). All the accession numbers are indicated in Supplementary Table 3.

References

  1. 1.

    Pinnola, A. & Bassi, R. Molecular mechanisms involved in plant photoprotection. Biochem. Soc. Trans. 46, 467–482 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    Tyystjärvi, E. & Aro, E. M. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc. Natl Acad. Sci. USA 93, 2213–2218 (1996).

    Article  Google Scholar 

  3. 3.

    Tian, Y., Sacharz, J., Ware, M. A., Zhang, H. & Ruban, A. V. Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light. J. Exp. Bot. 68, 4249–4262 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Bressan, M., Bassi, R. & Dall’Osto, L. Loss of LHCI system affects LHCII re-distribution between thylakoid domains upon state transitions. Photosynth. Res. 135, 251–261 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Nawrocki, W. et al. Cyclic electron flow in Chlamydomonas reinhardtii. bioRxiv https://doi.org/10.1101/153288 (2017).

  6. 6.

    Bailleul, B. et al. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524, 366–369 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Morosinotto, T., Mozzo, M., Bassi, R. & Croce, R. Pigment-pigment interactions in Lhca4 antenna complex of higher plants photosystem I. J. Biol. Chem. 280, 20612–20619 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    Goldschmidt-Clermont, M. & Bassi, R. Sharing light between two photosystems: mechanism of state transitions. Curr. Opin. Plant. Biol. 25, 71–78 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Bressan, M. et al. LHCII can substitute for LHCI as an antenna for photosystem I but with reduced light-harvesting capacity. Nat. Plants 2, 16131 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Le Quiniou, C., van Oort, B., Drop, B., van Stokkum, I. H. M. & Croce, R. The high efficiency of photosystem I in the green alga Chlamydomonas reinhardtii is maintained after the antenna size Is substantially increased by the association of light-harvesting complexes II. J. Biol. Chem. 290, 30587–30595 (2015).

    Article  Google Scholar 

  11. 11.

    Bennoun, P. The present model for chlororespiration. Photosynth. Res. 73, 273–277 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    Drop, B., Yadav, K. N. S., Boekema, E. & Croce, R. Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. Plant J. 78, 181–191 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Way, D. A. & Pearcy, R. W. Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiol. 32, 1066–1081 (2012).

    Article  Google Scholar 

  14. 14.

    Aro, E.-M. & Gerbaud, A. in Advances in Photosynthesis Research (ed. Sybesma, C.) 867–870 (Springer, Dordrecht, 1984).

  15. 15.

    Kull, O., Aan, A. & Sõelsepp, T. Light interception, nitrogen and leaf mass-distribution in a multilayer plant community. Funct. Ecol. 9, 589–595 (1995).

    Article  Google Scholar 

  16. 16.

    Cove, D., Bezanilla, M., Harries, P. & Quatrano, R. Mosses as model systems for the study of metabolism and development. Annu. Rev. Plant. Biol. 57, 497–520 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Pinnola, A. et al. Light-harvesting complex stress-related proteins catalyze excess energy dissipation in both photosystems of Physcomitrella patens. Plant Cell 27, 3213–3227 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Alboresi, A., Gerotto, C., Giacometti, G. M., Bassi, R. & Morosinotto, T. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc. Natl Acad. Sci. USA 107, 11128–11133 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Gerotto, C. et al. Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens. Proc. Natl Acad. Sci. USA 113, 12322–12327 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Nelson, N. & Junge, W. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84, 659–683 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Green, B. R. & Durnford, D. G. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 47, 685–714 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    Alboresi, A., Caffarri, S., Nogue, F., Bassi, R. & Morosinotto, T. In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. PLoS ONE 3, e2033 (2008).

    Article  Google Scholar 

  23. 23.

    Morosinotto, T., Breton, J., Bassi, R. & Croce, R. The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J. Biol. Chem. 278, 49223–49229 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    Iwai, M. & Yokono, M. Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants. Curr. Opin. Plant. Biol. 37, 94–101 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Iwai, M. et al. Light-harvesting complex Lhcb9 confers a green alga-type photosystem I supercomplex to the moss Physcomitrella patens. Nat. Plants 1, 14008 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Schaefer, D. G. & Zrÿd, J. P. Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11, 1195–1206 (1997).

    CAS  Article  Google Scholar 

  27. 27.

    Alboresi, A., Gerotto, C., Cazzaniga, S., Bassi, R. & Morosinotto, T. A red-shifted antenna protein associated with photosystem II in Physcomitrella patens. J. Biol. Chem. 286, 28978–28987 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Järvi, S., Suorsa, M., Paakkarinen, V. & Aro, E.-M. Optimized native gel systems for separation of thylakoid protein complexes: novel super- and mega-complexes. Biochem. J. 439, 207–214 (2011).

    Article  Google Scholar 

  29. 29.

    Mazor, Y., Borovikova, A., Caspy, I. & Nelson, N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants 3, 17014 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    Iwai, M., Grob, P., Nogales, E. & Niyogi, K. A novel supramolecular organization of photosystem I in the moss Physcomitrella patens. Nat. Plants, https://doi.org/10.1038/s41477-018-0271-1 (2018).

    Article  Google Scholar 

  32. 32.

    Jensen, P. E., Gilpin, M., Knoetzel, J. & Scheller, H. V. The PSI-K subunit of photosystem I is involved in the interaction between light-harvesting complex I and the photosystem I reaction center core. J. Biol. Chem. 275, 24701–24708 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    Busch, A. et al. Composition and structure of photosystem I in the moss Physcomitrella patens. J. Exp. Bot. 64, 2689–2699 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Niinemets, Ü. & Tobias, M. in Photosynthesis in Bryophytes and Early Land Plants (eds Hanson, D. & Rice, S.) 151–171 (Springer, Dordrecht, 2014).

  35. 35.

    Castelletti, S. et al. Recombinant Lhca2 and Lhca3 subunits of the photosystem I antenna system. Biochemistry 42, 4226–4234 (2003).

    CAS  Article  Google Scholar 

  36. 36.

    Rivadossi, A., Zucchelli, G., Garlaschi, F. M. & Jennings, R. C. The importance of PS I chlorophyll red forms in light-harvesting by leaves. Photosynth. Res. 60, 209–215 (1999).

    CAS  Article  Google Scholar 

  37. 37.

    Hill, R. & Bendall, F. Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature 186, 136–137 (1960).

    CAS  Article  Google Scholar 

  38. 38.

    Bassi, R. & Dainese, P. A supramolecular light-harvesting complex from chloroplast photosystem-II membranes. Eur. J. Biochem. 204, 317–326 (1992).

    CAS  Article  Google Scholar 

  39. 39.

    Drop, B. et al. Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J. Biol. Chem. 286, 44878–44887 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    Bassi, R. & Simpson, D. J. Chlorophyll-proteins of barley photosystem I. Eur. J. Biochem. 163, 221–231 (1987).

    CAS  Article  Google Scholar 

  41. 41.

    Ben-Shem, A., Frolow, F. & Nelson, N. Crystal structure of plant photosystem I. Nature 426, 630–635 (2003).

    CAS  Article  Google Scholar 

  42. 42.

    Graham, L. E., Kim, E., Arancibia-Avila, P., Graham, J. M. & Wilcox, L. W. Evolutionary and ecophysiological significance of sugar utilization by the peat moss Sphagnum compactum (Sphagnaceae) and the common charophycean associates Cylindrocystis brebissonii and Mougeotia sp. (Zygnemataceae). Am. J. Bot. 97, 1485–1491 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    Glime, J. Bryophyte Ecology: Physiological Ecology Vol. 1 (Michigan Technological University and the International Association of Bryologists, Houghton, 2007).

  44. 44.

    Kouril, R. et al. Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry 44, 10935–10940 (2005).

    CAS  Article  Google Scholar 

  45. 45.

    Benson, S. L. et al. An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis. Nat. Plants 1, 15176 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Bos, I. et al. Multiple LHCII antennae can transfer energy efficiently to a single photosystem I. Biochim. Biophys. Acta 1858, 371–378 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Ashton, N. W., Grimsley, N. H. & Cove, D. J. Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144, 427–435 (1979).

    CAS  Article  Google Scholar 

  48. 48.

    Genty, B., Briantais, J. M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92 (1989).

    CAS  Article  Google Scholar 

  49. 49.

    Pinnola, A. et al. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. Plant Cell 25, 3519–3534 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    Casazza, A. P., Tarantino, D. & Soave, C. Preparation and functional characterization of thylakoids from Arabidopsis thaliana. Photosynth. Res. 68, 175–180 (2001).

    CAS  Article  Google Scholar 

  51. 51.

    Trotta, A., Suorsa, M., Rantala, M., Lundin, B. & Aro, E.-M. Serine and threonine residues of plant STN7 kinase are differentially phosphorylated upon changing light conditions and specifically influence the activity and stability of the kinase. Plant J. 87, 484–494 (2016).

    CAS  Article  Google Scholar 

  52. 52.

    Kouřil, R. et al. Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. Plant J. 77, 568–576 (2014).

    Article  Google Scholar 

  53. 53.

    Oostergetel, G., Keegstra, W. & Brisson, A. Automation of specimen selection and data acquisition for protein electron crystallography. Ultramicroscopy 74, 47–59 (1998).

    CAS  Article  Google Scholar 

  54. 54.

    de la Rosa-Trevín, J. M. et al. Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. J. Struct. Biol. 195, 93–99 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Marie Curie Actions Initial Training Networks S2B (675006-SE2B) to R.B., A.P., EM. A., E.J.B. and R.K and by grant LO1204 (Sustainable Development of Research in the Centre of the Region Hana) from the National Program of Sustainability I from the Ministry of Education, Youth and Sports, Czech Republic to L.N. and R.K.

Author information

Affiliations

Authors

Contributions

R.B. designed the study and coordinated the experiments, and A.A. isolated and characterized the lhcb9 KO mutants. A.P. and F.B. performed the biochemical and physiological characterization of WT and lhcb9 KO mutants. A.T. and E.-M.A. performed the MS experiments and proteomics analyses. L.D. was involved in the fluorescence experiments, data analyses and critical review of the article. D.S., L.N., A.R., R.K. and E.J.B. performed the electron microscopy experiments and analyses. A.P. and R.B. wrote the paper.

Corresponding author

Correspondence to Roberto Bassi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7 and Supplementary Table 1.

Reporting Summary

Supplementary Table 2

Polypeptide composition of PSI–LHCI–Megacomplex and PSI–LHCI. List of proteins identified by MS analysis in the PSI–LHCI–Megacomplex and in the PSI–LHCI bands in WT and in the corresponding region of lhcb9 KO. Number of PSMs, Mascot score and number of peptides identified are shown for each sample analysed. Sp indicates a protein belonging to the list of common laboratory contaminants included in the database.

Supplementary Table 3A

Mass spectrometry data. List of peptide spectra matches (PSMs) of the unique peptides identified by MS for the subunits shown in Figure 5 in the PSI–LHCI.

Supplementary Table 3B

Mass spectrometry data. List of peptide spectra matches (PSMs) in PSI–LHCI–Megacomplex (b) bands in WT and in the corresponding region of lhcb9 KO.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinnola, A., Alboresi, A., Nosek, L. et al. A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens. Nature Plants 4, 910–919 (2018). https://doi.org/10.1038/s41477-018-0270-2

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing