Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for brassinosteroid response by BIL1/BZR1

Abstract

BRZ-INSENSITIVE-LONG HYPOCOTYL 1 (BIL1)/BRASSINAZOLE-RESISTANT 1 (BZR1) is a master transcription factor of brassinosteroid (BR) signalling. The varieties of nucleobase recognition of the NN-BRRE-core motif (NNCGTG), one of variant G-box motifs, distinguish BIL1/BZR1 from basic helix-loop-helix transcription factors, underlying the specific regulation of BR-responsive genes. Here, we show the non-canonical bHLH dimer formation of BIL1/BZR1 to optimize the interaction network with DNA and the orientation of a key residue for NN-BRRE-core motif recognition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Characterization and structure of the BIL1/BZR1 DBD.
Figure 2: DNA binding mode of BIL1/BZR1.

Data availability

The atomic coordinates and structural factors are available from the PDB under accession code 5ZD4 for the mutant MBP-fused BIL1/BZR1-DNA complex. The other data that support the findings of this study are available from the corresponding author on request.

References

  1. 1.

    Li, J. & Chory, J. Brassinosteroid actions in plants. J. Exp. Bot. 50, 275–282 (1999).

    CAS  Google Scholar 

  2. 2.

    Gudesblat, G. E. & Russinova, E. Plants grow on brassinosteroids. Curr. Opin. Plant Biolo. 14, 530–537 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Krishna, P. Brassinosteroid-mediated stress responses. J. Plant. Growth Regul. 22, 289–297 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    Ye, Q. et al. Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc. Natl Acad. Sci. USA 107, 6100–6105 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    Wang, Z. Y. et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell. 2, 505–513 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    Yin, Y. et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    Asami, T. et al. The influence of chemical genetics on plant science: shedding light on functions and mechanism of action of brassinosteroids using biosynthesis inhibitors. J. Plant. Growth Regul. 22, 336–349 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    He, J. X. et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307, 1634–1638 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    Yin, Y. et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120, 249–259 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    Sun, Y. et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell. 19, 765–777 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Yu, X. et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J. 65, 634–646 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Shimada, S. et al. Formation and dissociation of the BSS1 protein complex regulates plant development via brassinosteroid signaling. Plant Cell 27, 375–390 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Toledo-Ortiz, G., Huq, E. & Quail, P. H. The Arabidopsis basic / helix-loop-helix transcription factor family. Plant Cell 15, 1749–1770 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    Jones, S. An overview of the basic helix-loop-helix proteins. Genome Biol. 5, 226 (2004).

    Article  Google Scholar 

  15. 15.

    Castillon, A., Shen, H. & Huq, E. Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci. 12, 514–521 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    Oh, E., Zhu, J. Y. & Wang, Z. Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol. 14, 802–809 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Lorrain, S., Allen, T., Duek, P. D., Whitelam, G. C. & Fankhauser, C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 53, 312–323 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    Friedrichsen, D. M. et al. Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162, 1445–1456 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ferré-D’Amaré, A. R., Prendergast, G. C., Ziff, E. B. & Burley, S. K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363, 38–45 (1993).

    Article  Google Scholar 

  20. 20.

    Nair, S. K. & Burley, S. K. X-ray structures of Myc-Max and Mad-Max recognizing DNA: molecular bases of regulation by proto-oncogenic transcription factors. Cell 112, 193–205 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    Wang, Z., Wu, Y., Li, L. & Su, X. D. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res. 23, 213–224 (2013).

    Article  Google Scholar 

  22. 22.

    Smyth, D. R., Mrozkiewicz, M. K., McGrath, W. J., Listwan, P. & Kobe, B. Crystal structures of fusion proteins with large-affinity tags. Protein Sci. 12, 1313–1322 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    Moon, A. F., Mueller, G. A., Zhong, X. & Pedersen, L. C. A synergistic approach to protein crystallization: combination of a fixed-arm carrier with surface entropy reduction. Protein Sci. 19, 901–913 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lian, T., Xu, Y., Li, L. & Su, X. D. Crystal structure of tetrameric Arabidopsis MYC2 reveals the mechanism of enhanced interaction with DNA. Cell Rep. 19, 1334–1342 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell. 171, 287–304 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Guo, A. Y. et al. PlantTFDB: A comprehensive plant transcription factor database. Nucleic Acids Res 36, D966–D969 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    Ezer, D. et al. The G-box transcriptional regulatory code in Arabidopsis. Plant Physiol. 2, 628–640 (2017).

    Google Scholar 

  28. 28.

    Gordân, R. et al. Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape. Cell Rep. 3, 1093–1104 (2013).

    Article  Google Scholar 

  29. 29.

    Zhou, T. et al. Quantitative modeling of transcription factor binding specificities using DNA shape. Proc. Natl Acad. Sci. USA 112, 4654–4659 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Sievers, F. et al. Fast, scalable generation of high quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  Google Scholar 

  31. 31.

    Gouet, P., Courcelle, E., Stuart, D. I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    CAS  Article  Google Scholar 

  32. 32.

    Kabsch, W. XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. Sect. D Biol. Crystallogr 69, 1204–1214 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Matthews, B. W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    CAS  Article  Google Scholar 

  35. 35.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  Article  Google Scholar 

  36. 36.

    Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. Sect. D. Biol. Crystallogr. 62, 1002–1011 (2006).

    Article  Google Scholar 

  37. 37.

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D Biol.Crystallogr. 67, 235–242 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. Sect. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  39. 39.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  40. 40.

    Lovell, S. C. et al. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50, 437–450 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    Blanchet, C., Pasi, M., Zakrzewska, K. & Lavery, R. CURVES+ web server for analyzing and visualizing the helical, backbone and groove parameters of nucleic acid structures. Nucleic Acids Res. 39, W68–W73 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The synchrotron-radiation experiments were performed on beamlines AR NE3A at the Photon Factory with the approval of the High Energy Accelerator Research Organization (Proposal No. 2016G648). This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas No. 17H05835 from the Japan Society for the Promotion of Science (JSPS) (T.M.), the Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (M.T.), the Basis for Supporting Innovative Drug Discovery and Life Science Research from the MEXT (T.M.), and the Core Research for Evolutional Science and Technology (CREST) Program of Japan Science and Technology Agency (JST) (T.A. and T.N.).

Author information

Affiliations

Authors

Contributions

M.T. conceived and designed the research. S.N., T.M., Y.X. and A.N. performed the biochemical experiments and collected X-ray diffraction data. S.N., T.M., Y.X., A.N. and K.H. analysed the data. S.N., T.M., T.A., T.N. and M.T. wrote the paper. M.T. edited the manuscript.

Corresponding author

Correspondence to Masaru Tanokura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–12, Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nosaki, S., Miyakawa, T., Xu, Y. et al. Structural basis for brassinosteroid response by BIL1/BZR1. Nature Plants 4, 771–776 (2018). https://doi.org/10.1038/s41477-018-0255-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing