Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Overexpression of Rubisco subunits with RAF1 increases Rubisco content in maize

Abstract

Rubisco catalyses a rate-limiting step in photosynthesis and has long been a target for improvement due to its slow turnover rate. An alternative to modifying catalytic properties of Rubisco is to increase its abundance within C4 plant chloroplasts, which might increase activity and confer a higher carbon assimilation rate. Here, we overexpress the Rubisco large (LS) and small (SS) subunits with the Rubisco assembly chaperone RUBISCO ASSEMBLY FACTOR 1 (RAF1). While overexpression of LS and/or SS had no discernable impact on Rubisco content, addition of RAF1 overexpression resulted in a >30% increase in Rubisco content. Gas exchange showed a 15% increase in CO2 assimilation (ASAT) in UBI-LSSS-RAF1 transgenic plants, which correlated with increased fresh weight and in vitro Vcmax calculations. The divergence of Rubisco content and assimilation could be accounted for by the Rubisco activation state, which decreased up to 23%, suggesting that Rubisco activase may be limiting Vcmax, and impinging on the realization of photosynthetic potential from increased Rubisco content.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Maize transformation constructs and analysis of Rubisco content, cell type expression and assembly status.
Fig. 2: Rubisco activity and activation state, and relationship to Rubisco content.
Fig. 3: Photosynthetic performance of maize lines.
Fig. 4: Growth analysis.
Fig. 5: Relationships between in vitro and in vivo C4 and C3 cycle photosynthetic parameters.

Data availability

The data generated and analysed during this study are available from the corresponding author on reasonable request. Raw data would include photosynthesis and enzyme activity analyses.

References

  1. 1.

    Sharwood, R. E. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. New Phytol. 213, 494–510 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Hauser, T., Popilka, L., Hartl, F. U. & Hayer-Hartl, M. Role of auxiliary proteins in Rubisco biogenesis and function. Nat. Plants 1, 15065 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Furbank, R. T. et al. Genetic manipulation of key photosynthetic enzymes in the C4 plant Flaveria bidentis. Func. Plant Biol. 24, 477–485 (1997).

    CAS  Google Scholar 

  4. 4.

    Ghannoum, O. et al. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiol. 137, 638–650 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Sharwood, R. E., Ghannoum, O. & Whitney, S. M. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity. Curr. Opin. Plant. Biol. 31, 135–142 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Feller, U., Anders, I. & Mae, T. Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J. Exp. Bot. 59, 1615–1624 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Farquhar, G. On the nature of carbon isotope discrimination in C4 species. Func. Plant Biol. 10, 205–226 (1983).

    CAS  Google Scholar 

  8. 8.

    Furbank, R., Jenkins, C. & Hatch, M. C4 photosynthesis—quantum requirement, C4 acid overcycling and Q-cycle involvement. Aust. J. Plant. Physiol. 17, 1–7 (1990).

    CAS  Article  Google Scholar 

  9. 9.

    Bracher, A., Whitney, S. M., Hartl, F. U. & Hayer-Hartl, M. Biogenesis and metabolic maintenance of Rubisco. Annu. Rev. Plant. Biol. 68, 29–60 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Suzuki, Y. et al. Increased Rubisco content in transgenic rice transformed with the ‘sense’ rbcS gene. Plant Cell Physiol. 48, 626–637 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    Wostrikoff, K., Clark, A., Sato, S., Clemente, T. & Stern, D. Ectopic expression of rubisco subunits in maize mesophyll cells does not overcome barriers to cell type-specific accumulation. Plant Physiol. 160, 419–432 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Barkan, A. Nuclear mutants of maize with defects in chloroplast polysome assembly have altered chloroplast RNA metabolism. Plant Cell 5, 389–402 (1993).

    CAS  Article  Google Scholar 

  13. 13.

    Brutnell, T. P., Sawers, R. J., Mant, A. & Langdale, J. A. BUNDLE SHEATH DEFECTIVE2, a novel protein required for post- translational regulation of the rbcL gene of maize. Plant Cell 11, 849–864 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    Feiz, L. et al. Ribulose-1,5-Bis-Phosphate Carboxylase/Oxygenase Accumulation Factor1 is required for holoenzyme assembly in maize. Plant Cell 24, 3435–3446 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Feiz, L. et al. A protein with an inactive pterin-4a-carbinolamine dehydratase domain is required for Rubisco biogenesis in plants. Plant J. 80, 862–869 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Aigner, H. et al. Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2. Science 358, 1272–1278 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Kolesinski, P. et al. Insights into eukaryotic Rubisco assembly - crystal structures of RbcX chaperones from Arabidopsis thaliana. Biochim. Biophys. Acta 1830, 2899–2906 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Hauser, T. et al. Structure and mechanism of the Rubisco-assembly chaperone Raf1. Nat. Struct. Mol. Biol. 22, 720–728 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Whitney, S. M., Birch, R., Kelso, C., Beck, J. L. & Kapralov, M. V. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone. Proc. Natl Acad. Sci. USA 112, 3564–3569 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Wheatley, N. M., Sundberg, C. D., Gidaniyan, S. D., Cascio, D. & Yeates, T. O. Structure and Identification of apterin dehydratase-like protein as a Ribulose-bisphosphate Carboxylase/Oxygenase (RuBisCO) assembly factor in the alpha-carboxysome. J. Biol. Chem. 289, 7973–7981 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Bhat, J. Y., Thieulin-Pardo, G., Hartl, F. U. & Hayer-Hartl, M. Rubisco activases: AAA+ chaperones adapted to enzyme repair. Front. Mol. Biosci. 4, 20 (2017).

    Article  Google Scholar 

  22. 22.

    Mueller-Cajar, O. The diverse AAA+ machines that repair inhibited rubisco active sites. Front. Mol. Biosci. 4, 31 (2017).

    Article  Google Scholar 

  23. 23.

    Sharwood, R. E., Sonawane, B. V., Ghannoum, O. & Whitney, S. M. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry. J. Exp. Bot. 67, 3137–3148 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    von Caemmerer, S., Ghannoum, O., Pengelly, J. J. L. & Cousins, A. B. Carbon isotope discrimination as a tool to explore C4 photosynthesis. J. Exp. Bot. 65, 3459–3470 (2014).

    Article  Google Scholar 

  25. 25.

    Rodermel, S., Haley, J., Jiang, C. Z., Tsai, C. H. & Bogorad, L. A mechanism for intergenomic integration:abundance of ribulose bisphosphate carboxylase small-subunit protein influences the translation of the large-subunit mRNA. Proc. Natl Acad. Sci. USA 93, 3881–3885 (1996).

    CAS  Article  Google Scholar 

  26. 26.

    Johnson, X. et al. MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. Plant Cell 22, 234–248 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Kanevski, I. & Maliga, P. Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc. Natl Acad. Sci. USA 91, 1969–1973 (1994).

    CAS  Article  Google Scholar 

  28. 28.

    Kubien, D. S., von Caemmerer, S., Furbank, R. T. & Sage, R. F. C4 photosynthesis at low temperature. A study using transgenic plants with reduced amounts of Rubisco. Plant Physiol. 132, 1577–1585 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    Salesse-Smith, C., Sharwood, R. E., Sakamoto, W. & Stern, D. B. The Rubisco chaperone BSD2 may regulate chloroplast coverage in maize bundle sheath cells. Plant Physiol. 175, 1624–1633 (2017).

    Article  Google Scholar 

  30. 30.

    Friso, G., Majeran, W., Huang, M., Sun, Q. & van Wijk, K. J. Reconstruction of metabolic pathways, protein expression and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts; large scale quantitative proteomics using the first maize genome assembly. Plant Physiol. 152, 1219–1250 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    von Caemmerer, S. & Furbank, R. T. Strategies for improving C4 photosynthesis. Curr. Opin. Plant. Biol. 31, 125–134 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Carmo-Silva, E., Scales, J. C., Madgwick, P. J. & Parry, M. A. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ. 38, 1817–1832 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Suzuki, Y., Miyamoto, T., Yoshizawa, R., Mae, T. & Makino, A. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Plant Cell Environ. 32, 417–427 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    Ishikawa, C., Hatanaka, T., Misoo, S., Miyake, C. & Fukayama, H. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol. 156, 1603–1611 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    Morita, K., Hatanaka, T., Misoo, S. & Fukayama, H. Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of Rubisco in rice. Plant Physiol. 164, 69–79 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Crafts-Brandner, S. J. & Salvucci, M. E. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129, 1773–1780 (2002).

    CAS  Article  Google Scholar 

  37. 37.

    Millard, P. The accumulation and storage of nitrogen by herbaceous plants. Plant Cell Environ. 11, 1–8 (1988).

    CAS  Article  Google Scholar 

  38. 38.

    Millard, P. & Grelet, G. -a Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol. 30, 1083–1095 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Sweetlove, L. J., Nielsen, J. & Fernie, A. R. Engineering central metabolism – a grand challenge for plant biologists. Plant J. 90, 749–763 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Farooq, M., Aziz, T., Wahid, A., Lee, D. & Siddique, K. H. M. Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci. 60, 501–516 (2009).

    Article  Google Scholar 

  41. 41.

    Long, S. P. C4 photosynthesis at low temperatures. Plant Cell Environ. 6, 345–363 (1983).

    CAS  Google Scholar 

  42. 42.

    Wang, D., Portis, A. R. Jr., Moose, S. P. & Long, S. P. Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus x giganteus. Plant Physiol. 148, 557–567 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    Naidu, S. L., Moose, S. P., AK, A. L.-S., Raines, C. A. & Long, S. P. Cold tolerance of C4 photosynthesis in Miscanthus x giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol. 132, 1688–1697 (2003).

    CAS  Article  Google Scholar 

  44. 44.

    Cousins, A. B. et al. The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Plant Physiol. 145, 1006–1017 (2007).

    CAS  Article  Google Scholar 

  45. 45.

    Brown R. H. in C 4 Plant Biology 1st edn (eds Sage, R. & Monson, R.) 473–509 (Academic Press, Cambridge, 1999).

  46. 46.

    Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. NatlAcad. Sci. USA 112, 8529–8536 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Niyogi, K. K. Editorial overview: Physiology and metabolism: Light responses from photoreceptors to photosynthesis and photoprotection. Curr. Opin. Plant Biol. 37, 4–7 (2017).

    Article  Google Scholar 

  48. 48.

    Sarlikioti, V., De Visser, P. H., Buck-Sorlin, G. & Marcelis, L. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model. Ann. Bot. 108, 1065–1073 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    Glowacka, K. et al. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat. Commun. 9, 868 (2018).

    Article  Google Scholar 

  50. 50.

    Feng, L. et al. Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep. 26, 1635–1646 (2007).

    CAS  Article  Google Scholar 

  51. 51.

    Sattarzadeh, A. et al. Transgenic maize lines with cell-type specific expression of fluorescent proteins in plastids. Plant. Biotechnol. J. 8, 112–125 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    Markelz, N. H., Costich, D. E. & Brutnell, T. P. Photomorphogenic responses in maize seedling development. Plant Physiol. 133, 1578–1591 (2003).

    CAS  Article  Google Scholar 

  53. 53.

    Barkan, A. Approaches to investigating nuclear genes that function in chloroplast biogenesis in land plants. Meths. Enzymol. 297, 38–57 (1998).

    CAS  Article  Google Scholar 

  54. 54.

    Lilley, R. M. & Walker, D. A. An improved spectrophotometric assay for ribulosebisphosphate carboxylase. Biochim. Biophys. Acta 358, 226–229 (1974).

    CAS  Article  Google Scholar 

  55. 55.

    Sharwood, R. E., von Caemmerer, S., Maliga, P. & Whitney, S. M. The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. Plant Physiol. 146, 83–96 (2008).

    CAS  Article  Google Scholar 

  56. 56.

    Ashton, A. R., Burnell, J. N., Furbank, R. T., Jenkins, C. L. D. & Hatch, M. D. in Methods in Plant Biochemistry Vol 3 (ed. Lea, P. J.) 39–71 (Academic, London, 1999).

  57. 57.

    Sharwood, R. E., Sonawane, B. V. & Ghannoum, O. Photosynthetic flexibility in maize exposed to salinity andshade. J. Exp. Bot. 65, 3715–3724 (2014).

    Article  Google Scholar 

  58. 58.

    Kromdijk, J., Griffiths, H. & Schepers, H. E. Can the progressive increase of C4 bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration? Plant Cell Environ. 33, 1935–1948 (2010).

    CAS  Article  Google Scholar 

  59. 59.

    Evans, J., Sharkey, T., Berry, J. & Farquhar, G. Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Funct. Plant Biol. 13, 281–292 (1986).

    CAS  Google Scholar 

  60. 60.

    Barbour, M. M., Evans, J. R., Simonin, K. A. & Caemmerer, S. Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytol. 210, 875–889 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    Kromdijk, J., Ubierna, N., Cousins, A. B. & Griffiths, H. Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation. J. Exp. Bot. 65, 3443–3457 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge T. Clemente and S. Sato (University of Nebraska–Lincoln) for assembling the final transformation constructs, performing maize transformations, and providing seed from T0 lines. T. Nelson is acknowledged for sharing ME antibody. This research was supported by the Agriculture and Food Research Initiative from the National Institute of Food and Agriculture, US Department of Agriculture, under award number 2016-67013-24464. Travel to the Australian National University was supported by the Mario Einaudi Center for International Studies, International Research Travel Grant at Cornell University. We thank S. Long (University of Illinois) for helpful discussions and manuscript suggestions. R.E.S. is funded by the ARC Centre of Excellence for Translational Photosynthesis (CE140100015) and ARC DECRA (DE13010760).

Author information

Affiliations

Authors

Contributions

C.S. participated in all experiments and drafted the manuscript. R.S. participated in experiments shown in Figs. 1, 2, 3, 5 and Table 1. F.A.B. participated in experiments shown in Fig. 3 and Table 1. J.K. participated in some experiments presented in Fig. 5 and Table 1. V.B. participated in experiments shown in Supplementary Figs. 3 and 4. D.S. was responsible for project management, finalization of data analysis and manuscript preparation.

Corresponding author

Correspondence to David B. Stern.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salesse-Smith, C.E., Sharwood, R.E., Busch, F.A. et al. Overexpression of Rubisco subunits with RAF1 increases Rubisco content in maize. Nature Plants 4, 802–810 (2018). https://doi.org/10.1038/s41477-018-0252-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing