Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust


Crop diseases reduce wheat yields by ~25% globally and thus pose a major threat to global food security1. Genetic resistance can reduce crop losses in the field and can be selected through the use of molecular markers. However, genetic resistance often breaks down following changes in pathogen virulence, as experienced with the wheat yellow (stripe) rust fungus Puccinia striiformis f. sp. tritici (Pst)2. This highlights the need to (1) identify genes that, alone or in combination, provide broad-spectrum resistance, and (2) increase our understanding of the underlying molecular modes of action. Here we report the isolation and characterization of three major yellow rust resistance genes (Yr7, Yr5 and YrSP) from hexaploid wheat (Triticum aestivum), each having a distinct recognition specificity. We show that Yr5, which remains effective to a broad range of Pst isolates worldwide, is closely related yet distinct from Yr7, whereas YrSP is a truncated version of Yr5 with 99.8% sequence identity. All three Yr genes belong to a complex resistance gene cluster on chromosome 2B encoding nucleotide-binding and leucine-rich repeat proteins (NLRs) with a non-canonical N-terminal zinc-finger BED domain3 that is distinct from those found in non-NLR wheat proteins. We developed diagnostic markers to accelerate haplotype analysis and for marker-assisted selection to expedite the stacking of the non-allelic Yr genes. Our results provide evidence that the BED-NLR gene architecture can provide effective field-based resistance to important fungal diseases such as wheat yellow rust.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Yr5 and YrSP are closely related sequences and distinct from Yr7.
Fig. 2: Yr7 and Yr5/YrSP encode integrated BED-domain immune receptor genes
Fig. 3: BED domains from BED-NLRs and non-NLR proteins are distinct


  1. Oerke, E. C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).

    Article  Google Scholar 

  2. Hubbard, A. et al. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol. 16, 23 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aravind, L. The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem. Sci. 25, 421–423 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. Kourelis, J. & van der Hoorn, R. A. L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell. (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sarris, P. F., Cevik, V., Dagdas, G., Jones, J. D. G. & Krasileva, K. V. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol. 14, 8 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kroj, T., Chanclud, E., Michel-Romiti, C., Grand, X. & Morel, J.-B. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol. 210, 618–626 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bailey, P. C. et al. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol. 19, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bundock, P. & Hooykaas, P. An Arabidopsis hAT-like transposase is essential for plant development. Nature 436, 282–284 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Yoshimura, S. et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl Acad. Sci. USA. 95, 1663–1668 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. Das, B., Sengupta, S., Prasad, M. & Ghose, T. Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces. BMC Genet. 15, 82 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Law, C. N. Genetic control of yellow rust resistance in T. spelta Album. Plant Breed. Institute, Cambridge, Annu. Rep. 1975, 108–109 (1976).

    Google Scholar 

  13. Johnson, R. & Dyck, P. L. Resistance to yellow rust in Triticum spelta var. Album and bread wheat cultivars Thatcher and Lee. Colloq. l’INRA (1984).

  14. Zhang, P., McIntosh, R. A., Hoxha, S. & Dong, C. M. Wheat stripe rust resistance genes Yr5 and Yr7 are allelic. Theor. Appl. Genet. 120, 25–29 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. Feng, J. Y. et al. Molecular mapping of YrSP and its relationship with other genes for stripe rust resistance in wheat chromosome 2BL. Phytopathology 105, 1206–1213 (2015).

    Article  PubMed  CAS  Google Scholar 

  16. Wellings, C. R. & McIntosh, R. A. Puccinia striiformis f. sp. tritici in Australasia: pathogenic changes during the first 10 years. Plant Pathol. 39, 316–325 (1990).

    Article  Google Scholar 

  17. Zhan, G. et al. Virulence and molecular diversity of the Puccinia striiformis f. sp. tritici population in Xinjiang in relation to other regions of western China. Plant Dis. 100, 99–107 (2016).

    Article  CAS  Google Scholar 

  18. Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652–655 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Sun, Q., Wei, Y., Ni, Z., Xie, C. & Yang, T. Microsatellite marker for yellow rust resistance gene Yr5 in wheat introgressed from spelt wheat. Plant Breed. 121, 539–541 (2002).

    Article  CAS  Google Scholar 

  20. Yao, Z. J. et al. The molecular tagging of the yellow rust resistance gene Yr7 in wheat transferred from differential host Lee using microsatellite markers. Sci. Agric. Sin. 39, 1146–1152 (2006).

    CAS  Google Scholar 

  21. Brunner, S. et al. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J. 64, 433–445 (2010).

    Article  PubMed  CAS  Google Scholar 

  22. Ellis, J. G., Lawrence, G. J., Luck, J. E. & Dodds, P. N. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11, 495–506 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bai, S. et al. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog. 8, e1002752 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Periyannan, S. et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341, 786–788 (2013).

    Article  PubMed  CAS  Google Scholar 

  25. Srichumpa, P., Brunner, S., Keller, B. & Yahiaoui, N. Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 139, 885–895 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sarris, P. F. et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161, 1089–1100 (2015).

    Article  PubMed  CAS  Google Scholar 

  27. Wingen, L. U. et al. Establishing the A. E. Watkins landrace cultivar collection as a resource for systematic gene discovery in bread wheat. Theor. Appl. Genet. 127, 1831–1842 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Reeves, J. C. et al. Changes over time in the genetic diversity of four major European crops - a report from the Gediflux Framework 5 project. In Proc. 17th EUCARPIA Gen. Congr. (Eds Grausgruber, J. V. H. & Ruckenbauer, P.) 3–7 (BOKU, 2004).

  29. Ellis, J. G., Lagudah, E. S., Spielmeyer, W. & Dodds, P. N. The past, present and future of breeding rust resistant wheat. Front. Plant Sci. 5, 641 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. Ellis, J. G. Integrated decoys and effector traps: how to catch a plant pathogen. BMC Biol. 14, 13 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dobon, A., Bunting, D. C. E., Cabrera-Quio, L. E., Uauy, C. & Saunders, D. G. O. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genomics 17, 380 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Seeholzer, S. et al. Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol. Plant-Microbe Interact. 23, 497–509 (2010).

    Article  PubMed  CAS  Google Scholar 

  34. Krasileva, K. V. et al. Uncovering hidden variation in polyploid wheat. Proc. Natl Acad. Sci. USA. 6, E913–E921 (2017).

    Article  CAS  Google Scholar 

  35. Hubbard, A. J., Fanstone, V. & Bayles, R. A. UKCPVS 2009 Annual report (NIAB, 2009).

  36. Gassner, G. & Straib, W. Die Bestimmung der biologischen Rassen des Weizengelbrostes (Pucciniaglumarum f.sp. tritici Schmidt Erikss. u. Henn). Arb. Biol. Reichsanst. Land: Forstwirtsch. 20, 141–163 (1932).

    Google Scholar 

  37. McGrann, G. R. D. et al. Genomic and genetic analysis of the wheat race-specific yellow rust resistance gene Yr5. J. Plant Sci. Mol. Breed. 3, (2014).

  38. Lagudah, E. S., Appels, R., Brown, A. H. D. & McNeil, D. The molecular–genetic analysis of Triticum tauschii, the D-genome donor to hexaploid wheat. Genome 34, 375–386 (1991).

    Article  CAS  Google Scholar 

  39. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article  PubMed  CAS  Google Scholar 

  42. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  PubMed  CAS  Google Scholar 

  43. Warren, R. F., Henk, A., Mowery, P., Holub, E. & Innes, R. W. A mutation within the leucine-rich repeat domain of the arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10, 1439–1452 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Altschul, S. F. et al. Protein database searches using compositionally adjusted substitution matrices. FEBS J. 272, 5101–5109 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pallotta, M. A. et al. Marker assisted wheat breeding in the southern region of Australia. in Proc. 10th Int. Wheat Genet. Symp. Instituto Sperimentale Cerealcoltura (Eds Pogna, N. & McIntosh, R.A.) 789–791 (Istituto Sperimentale per la Cerealicoltura, 2003).

  46. Ramirez-Gonzalez, R. H. et al. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol. J. 13, 613–624 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).

    Article  PubMed  CAS  Google Scholar 

  48. Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–97 (2017).

    Article  PubMed  CAS  Google Scholar 

  49. Luo, M.-C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).

    PubMed  CAS  Google Scholar 

  50. Jupe, F. et al. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13, 75 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references


This work was supported by the UK Biotechnology and Biological Sciences Research Council Designing Future Wheat programme BB/P016855/1 and the Grains Research and Development Corporation, Australia. C.M. was funded by a PhD studentship from Group Limagrain and J.Z. is funded by PhD scholarships from the National Science Foundation (NSF) and the Monsanto Beachell-Borlaug International Scholars Programs (MBBISP). We thank the International Wheat Genome Sequencing Consortium for allowing pre-publication access to the RefSeq v1.0 assembly and gene annotation. We thank J. Dubcovsky and X. Zhang (University of California, Davis) for providing Yr5 cultivars. We thank the John Innes Centre Horticultural Services and Limagrain Rothwell staff for management of the wheat populations. We also thank S. Specel (Limagrain; Clermont-Ferrand) and R. Goram (JIC) for their help in designing and running KASP assays, and S. Hoxha (The University of Sydney) for technical assistance. This research was supported by the NBI Computing Infrastructure for Science (CiS) group in Norwich, UK.

Author information

Authors and Affiliations



C.M. performed the experiments to clone Yr7 and Yr5 and the subsequent analyses of their loci and BED domains, designed the gene-specific markers, analysed the genotype data in the studied panels, and designed and made the figures. J.Z. performed the experiments to clone YrSP, confirm the Yr7 and Yr5 genes in AvocetS-Yr7 and AvocetS-Yr5 mutants, and identified the full length of Yr5 and YrSP with their respective regulatory elements. C.M. and J.Z. developed the gene-specific markers. P.Z. and R.M. performed the EMS treatment, isolation, and confirmation of Yr7, Yr5 and YrSP mutants in AvocetS NILs. P.F. performed the pathology work on the Cadenza Yr7 mutants and the mapping populations. B.S. helped with the NLR -Annotator analysis and provided the bait library for target enrichment and sequencing of NLRs. N.M.A. provided DNA samples for allelic variation studies. L.B. provided Lemhi-Yr5 mutants. R.M., E.L., P.Z., B.W., S.B. and C.U. conceived, designed and supervised the research. C.M. and C.U. wrote the manuscript. J.Z., P.Z., R.M., B.W., N.M.A., L.B. and E.L. provided edits.

Corresponding author

Correspondence to Cristobal Uauy.

Ethics declarations

Competing interests

A patent application based on this work has been filed (United Kingdom Patent Application No. 1805865.1).

Data availability

The data that support the findings of this study are presented in the supplementary information. All sequencing data have been deposited in the NCBI Short Reads Archive under accession numbers listed in Supplementary Table 14 (SRP139043). Cadenza (Yr7) and Lemhi (Yr5) mutants are available through the JIC Germplasm Resource Unit (

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes and Supplementary Figures 1–10.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–13.

Supplementary File 1

Annotation of the Yr7 locus in Cadenza with exon/intron structure, positions of mutations and the position of primers for long-range PCR and nested PCRs that were carried out prior to Sanger sequencing.

Supplementary File 2

Annotation of the Yr5/YrSP locus in Lemhi-Yr5 and AvocetS-YrSP, respectively, with exon/intron structure, the position of mutations and the position of primers for long-range PCR and nested PCRs that were carried out prior to Sanger sequencing.

Supplementary File 3

Curation of the Yr7 locus in the Cadenza genome assembly based on Sanger sequencing results.

Supplementary File 4

Syntenic region across different grasses (Supplementary Table 6) and the NLR loci identified with NLR-Annotator.

Supplementary File 5

Curated sequences of BED-NLRs from chromosome 2B and Ta_2D7.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchal, C., Zhang, J., Zhang, P. et al. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants 4, 662–668 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing