Abstract
Crop diseases reduce wheat yields by ~25% globally and thus pose a major threat to global food security1. Genetic resistance can reduce crop losses in the field and can be selected through the use of molecular markers. However, genetic resistance often breaks down following changes in pathogen virulence, as experienced with the wheat yellow (stripe) rust fungus Puccinia striiformis f. sp. tritici (Pst)2. This highlights the need to (1) identify genes that, alone or in combination, provide broad-spectrum resistance, and (2) increase our understanding of the underlying molecular modes of action. Here we report the isolation and characterization of three major yellow rust resistance genes (Yr7, Yr5 and YrSP) from hexaploid wheat (Triticum aestivum), each having a distinct recognition specificity. We show that Yr5, which remains effective to a broad range of Pst isolates worldwide, is closely related yet distinct from Yr7, whereas YrSP is a truncated version of Yr5 with 99.8% sequence identity. All three Yr genes belong to a complex resistance gene cluster on chromosome 2B encoding nucleotide-binding and leucine-rich repeat proteins (NLRs) with a non-canonical N-terminal zinc-finger BED domain3 that is distinct from those found in non-NLR wheat proteins. We developed diagnostic markers to accelerate haplotype analysis and for marker-assisted selection to expedite the stacking of the non-allelic Yr genes. Our results provide evidence that the BED-NLR gene architecture can provide effective field-based resistance to important fungal diseases such as wheat yellow rust.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Oerke, E. C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).
Hubbard, A. et al. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol. 16, 23 (2015).
Aravind, L. The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem. Sci. 25, 421–423 (2000).
Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).
Kourelis, J. & van der Hoorn, R. A. L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell. https://doi.org/10.1105/tpc.17.00579 (2018).
Sarris, P. F., Cevik, V., Dagdas, G., Jones, J. D. G. & Krasileva, K. V. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol. 14, 8 (2016).
Kroj, T., Chanclud, E., Michel-Romiti, C., Grand, X. & Morel, J.-B. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol. 210, 618–626 (2016).
Bailey, P. C. et al. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol. 19, 23 (2018).
Bundock, P. & Hooykaas, P. An Arabidopsis hAT-like transposase is essential for plant development. Nature 436, 282–284 (2005).
Yoshimura, S. et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl Acad. Sci. USA. 95, 1663–1668 (1998).
Das, B., Sengupta, S., Prasad, M. & Ghose, T. Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces. BMC Genet. 15, 82 (2014).
Law, C. N. Genetic control of yellow rust resistance in T. spelta Album. Plant Breed. Institute, Cambridge, Annu. Rep. 1975, 108–109 (1976).
Johnson, R. & Dyck, P. L. Resistance to yellow rust in Triticum spelta var. Album and bread wheat cultivars Thatcher and Lee. Colloq. l’INRA (1984).
Zhang, P., McIntosh, R. A., Hoxha, S. & Dong, C. M. Wheat stripe rust resistance genes Yr5 and Yr7 are allelic. Theor. Appl. Genet. 120, 25–29 (2009).
Feng, J. Y. et al. Molecular mapping of YrSP and its relationship with other genes for stripe rust resistance in wheat chromosome 2BL. Phytopathology 105, 1206–1213 (2015).
Wellings, C. R. & McIntosh, R. A. Puccinia striiformis f. sp. tritici in Australasia: pathogenic changes during the first 10 years. Plant Pathol. 39, 316–325 (1990).
Zhan, G. et al. Virulence and molecular diversity of the Puccinia striiformis f. sp. tritici population in Xinjiang in relation to other regions of western China. Plant Dis. 100, 99–107 (2016).
Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652–655 (2016).
Sun, Q., Wei, Y., Ni, Z., Xie, C. & Yang, T. Microsatellite marker for yellow rust resistance gene Yr5 in wheat introgressed from spelt wheat. Plant Breed. 121, 539–541 (2002).
Yao, Z. J. et al. The molecular tagging of the yellow rust resistance gene Yr7 in wheat transferred from differential host Lee using microsatellite markers. Sci. Agric. Sin. 39, 1146–1152 (2006).
Brunner, S. et al. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J. 64, 433–445 (2010).
Ellis, J. G., Lawrence, G. J., Luck, J. E. & Dodds, P. N. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11, 495–506 (1999).
Bai, S. et al. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog. 8, e1002752 (2012).
Periyannan, S. et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341, 786–788 (2013).
Srichumpa, P., Brunner, S., Keller, B. & Yahiaoui, N. Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 139, 885–895 (2005).
Sarris, P. F. et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161, 1089–1100 (2015).
Wingen, L. U. et al. Establishing the A. E. Watkins landrace cultivar collection as a resource for systematic gene discovery in bread wheat. Theor. Appl. Genet. 127, 1831–1842 (2014).
Reeves, J. C. et al. Changes over time in the genetic diversity of four major European crops - a report from the Gediflux Framework 5 project. In Proc. 17th EUCARPIA Gen. Congr. (Eds Grausgruber, J. V. H. & Ruckenbauer, P.) 3–7 (BOKU, 2004).
Ellis, J. G., Lagudah, E. S., Spielmeyer, W. & Dodds, P. N. The past, present and future of breeding rust resistant wheat. Front. Plant Sci. 5, 641 (2014).
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).
Ellis, J. G. Integrated decoys and effector traps: how to catch a plant pathogen. BMC Biol. 14, 13 (2016).
Dobon, A., Bunting, D. C. E., Cabrera-Quio, L. E., Uauy, C. & Saunders, D. G. O. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genomics 17, 380 (2016).
Seeholzer, S. et al. Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol. Plant-Microbe Interact. 23, 497–509 (2010).
Krasileva, K. V. et al. Uncovering hidden variation in polyploid wheat. Proc. Natl Acad. Sci. USA. 6, E913–E921 (2017).
Hubbard, A. J., Fanstone, V. & Bayles, R. A. UKCPVS 2009 Annual report (NIAB, 2009).
Gassner, G. & Straib, W. Die Bestimmung der biologischen Rassen des Weizengelbrostes (Pucciniaglumarum f.sp. tritici Schmidt Erikss. u. Henn). Arb. Biol. Reichsanst. Land: Forstwirtsch. 20, 141–163 (1932).
McGrann, G. R. D. et al. Genomic and genetic analysis of the wheat race-specific yellow rust resistance gene Yr5. J. Plant Sci. Mol. Breed. 3, (2014).
Lagudah, E. S., Appels, R., Brown, A. H. D. & McNeil, D. The molecular–genetic analysis of Triticum tauschii, the D-genome donor to hexaploid wheat. Genome 34, 375–386 (1991).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).
Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).
Warren, R. F., Henk, A., Mowery, P., Holub, E. & Innes, R. W. A mutation within the leucine-rich repeat domain of the arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10, 1439–1452 (1998).
Altschul, S. F. et al. Protein database searches using compositionally adjusted substitution matrices. FEBS J. 272, 5101–5109 (2005).
Pallotta, M. A. et al. Marker assisted wheat breeding in the southern region of Australia. in Proc. 10th Int. Wheat Genet. Symp. Instituto Sperimentale Cerealcoltura (Eds Pogna, N. & McIntosh, R.A.) 789–791 (Istituto Sperimentale per la Cerealicoltura, 2003).
Ramirez-Gonzalez, R. H. et al. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol. J. 13, 613–624 (2015).
Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).
Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–97 (2017).
Luo, M.-C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).
Jupe, F. et al. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13, 75 (2012).
Acknowledgements
This work was supported by the UK Biotechnology and Biological Sciences Research Council Designing Future Wheat programme BB/P016855/1 and the Grains Research and Development Corporation, Australia. C.M. was funded by a PhD studentship from Group Limagrain and J.Z. is funded by PhD scholarships from the National Science Foundation (NSF) and the Monsanto Beachell-Borlaug International Scholars Programs (MBBISP). We thank the International Wheat Genome Sequencing Consortium for allowing pre-publication access to the RefSeq v1.0 assembly and gene annotation. We thank J. Dubcovsky and X. Zhang (University of California, Davis) for providing Yr5 cultivars. We thank the John Innes Centre Horticultural Services and Limagrain Rothwell staff for management of the wheat populations. We also thank S. Specel (Limagrain; Clermont-Ferrand) and R. Goram (JIC) for their help in designing and running KASP assays, and S. Hoxha (The University of Sydney) for technical assistance. This research was supported by the NBI Computing Infrastructure for Science (CiS) group in Norwich, UK.
Author information
Authors and Affiliations
Contributions
C.M. performed the experiments to clone Yr7 and Yr5 and the subsequent analyses of their loci and BED domains, designed the gene-specific markers, analysed the genotype data in the studied panels, and designed and made the figures. J.Z. performed the experiments to clone YrSP, confirm the Yr7 and Yr5 genes in AvocetS-Yr7 and AvocetS-Yr5 mutants, and identified the full length of Yr5 and YrSP with their respective regulatory elements. C.M. and J.Z. developed the gene-specific markers. P.Z. and R.M. performed the EMS treatment, isolation, and confirmation of Yr7, Yr5 and YrSP mutants in AvocetS NILs. P.F. performed the pathology work on the Cadenza Yr7 mutants and the mapping populations. B.S. helped with the NLR -Annotator analysis and provided the bait library for target enrichment and sequencing of NLRs. N.M.A. provided DNA samples for allelic variation studies. L.B. provided Lemhi-Yr5 mutants. R.M., E.L., P.Z., B.W., S.B. and C.U. conceived, designed and supervised the research. C.M. and C.U. wrote the manuscript. J.Z., P.Z., R.M., B.W., N.M.A., L.B. and E.L. provided edits.
Corresponding author
Ethics declarations
Competing interests
A patent application based on this work has been filed (United Kingdom Patent Application No. 1805865.1).
Data availability
The data that support the findings of this study are presented in the supplementary information. All sequencing data have been deposited in the NCBI Short Reads Archive under accession numbers listed in Supplementary Table 14 (SRP139043). Cadenza (Yr7) and Lemhi (Yr5) mutants are available through the JIC Germplasm Resource Unit (www.seedstor.ac.uk).
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes and Supplementary Figures 1–10.
Supplementary Tables
Supplementary Tables 1–13.
Supplementary File 1
Annotation of the Yr7 locus in Cadenza with exon/intron structure, positions of mutations and the position of primers for long-range PCR and nested PCRs that were carried out prior to Sanger sequencing.
Supplementary File 2
Annotation of the Yr5/YrSP locus in Lemhi-Yr5 and AvocetS-YrSP, respectively, with exon/intron structure, the position of mutations and the position of primers for long-range PCR and nested PCRs that were carried out prior to Sanger sequencing.
Supplementary File 3
Curation of the Yr7 locus in the Cadenza genome assembly based on Sanger sequencing results.
Supplementary File 4
Syntenic region across different grasses (Supplementary Table 6) and the NLR loci identified with NLR-Annotator.
Supplementary File 5
Curated sequences of BED-NLRs from chromosome 2B and Ta_2D7.
Rights and permissions
About this article
Cite this article
Marchal, C., Zhang, J., Zhang, P. et al. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants 4, 662–668 (2018). https://doi.org/10.1038/s41477-018-0236-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41477-018-0236-4
This article is cited by
-
Integrated genome-wide association and transcriptomic analysis to identify receptor kinase genes to stripe rust resistance in wheat germplasm from southwestern China
BMC Plant Biology (2024)
-
Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein
Nature Communications (2024)
-
An Aegilops longissima NLR protein with integrated CC-BED module mediates resistance to wheat powdery mildew
Nature Communications (2024)
-
A kinase fusion protein from Aegilops longissima confers resistance to wheat powdery mildew
Nature Communications (2024)
-
Meta-QTL analysis and identification of candidate genes for multiple-traits associated with spot blotch resistance in bread wheat
Scientific Reports (2024)