Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Circadian oscillations of cytosolic free calcium regulate the Arabidopsis circadian clock

Abstract

In the last decade, the view of circadian oscillators has expanded from transcriptional feedback to incorporate post-transcriptional, post-translational, metabolic processes and ionic signalling. In plants and animals, there are circadian oscillations in the concentration of cytosolic free Ca2+ ([Ca2+]cyt), though their purpose has not been fully characterized. We investigated whether circadian oscillations of [Ca2+]cyt regulate the circadian oscillator of Arabidopsis thaliana. We report that in Arabidopsis, [Ca2+]cyt circadian oscillations can regulate circadian clock function through the Ca2+-dependent action of CALMODULIN-LIKE24 (CML24). Genetic analyses demonstrate a linkage between CML24 and the circadian oscillator, through pathways involving the circadian oscillator gene TIMING OF CAB2 EXPRESSION1 (TOC1).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Transcripts abundance of circadian clock genes is modulated by [Ca2+]cyt.
Fig. 2: CML24 regulates circadian period in Arabidopsis.
Fig. 3: CML24 has profound effect on the regulation of the Arabidopsis circadian clock.
Fig. 4: Circadian oscillations of [Ca2+]cyt are necessary for the correct function of the circadian oscillator.
Fig. 5: Epistatic analysis of leaf movements rhythms shows that TOC1 is functionally linked to CML24 to regulate circadian period.
Fig. 6: Epistatic analyses of leaf movements rhythms and flowering time shows that CHE is functionally linked to CML24.

References

  1. 1.

    Dodd, A. N. et al. Plant circadian clocks improve growth, competitive advantage and survival. Science 309, 620–623 (2005).

    Article  CAS  Google Scholar 

  2. 2.

    Harmer, S. L. The circadian system in higher plants. Annu. Rev. Plant Biol. 60, 357–377 (2009).

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Gardner, M. J., Hubbard, K. E., Hotta, C. T., Dodd, A. N. & Webb, A. A. R. How plants tell the time. Biochem. J. 397, 15–24 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Wang, Z. Y. et al. A MYB-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9, 491–507 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. 5.

    Schaffer, R. et al. The late elongated hypocotyls mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219–1229 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Farré, E. M., Harmer, S. L., Harmon, F. G., Yanovsky, M. J. & Kay, S. A. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr. Biol. 15, 47–54 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Millar, A. J., Carré, I. A., Strayer, C. A., Chua, N. H. & Kay, S. A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Park, D. H. et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579–1582 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Alabadí, D. et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880–883 (2001).

    Article  PubMed  Google Scholar 

  10. 10.

    Pruneda-Paz, J. L., Breton, G., Para, A. & Kay, S. A. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323, 1481–1485 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Haydon, M. J., Mielczarek, O., Robertson, F. C., Hubbard, K. E. & Webb, A. A. R. Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature 502, 689–692 (2013).

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Malapeira, J., Khaitova, L. C. & Más, P. Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc. Natl Acad. Sci., USA 109, 21540–21545 (2012).

    Article  PubMed  Google Scholar 

  13. 13.

    Asher, G. et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943–953 (2010).

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Nahakata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+salvage pathway by CLOCK-SIRT1. Science 324, 654–657 (2009).

    Article  CAS  Google Scholar 

  15. 15.

    Más, P. Circadian clock function in Arabidopsis thaliana: time beyond transcription. Trends Cell Biol. 18, 273–281 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Dodd, A. N. et al. A cADPR-based feedback loop modulates the Arabidopsis circadian clock. Science 318, 1789–1792 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Somers, D. E., Schultz, T. F., Milnamow, M. & Kay, S. A. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101, 319–329 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Kim, W. Y. et al. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356–360 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Más, P., Kim, W. Y., Somers, D. E. & Kay, S. A. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426, 567–570 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Feeney, K. A. et al. Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature 532, 375–379 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Tataroglu, O. et al. Calcium and SOL protease mediate temperature resetting of circadian clocks. Cell 163, 1214–1224 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Hong, S., Kim, S. A., Guerinot, M. L. & McClung, C. R. Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis. Plant Physiol. 161, 893–903 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Harrisingh, M. C., Wu, Y., Lnenicka, G. A. & Nitabach, M. N. Intracellular Ca2+ regulates free-running circadian clock oscillation in vivo. J. Neurosci. 27, 12489–12499 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Johnson, C. H. et al. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269, 1863–1865 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Hong, J. H. et al. Intracellular calcium spikes in rat suprachiasmatic nucleus neurons induced by BAPTA-based calcium dyes. PloS One 5, e9634 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Sánchez, J. P., Duque, P. & Chua, N. H. ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis. Plant J. 38, 381–395 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Ikeda, M. Calcium dynamics and circadian rhythms in suprachiasmatic nucleus neurons. The Neuroscientist 10, 315–324 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Leckie, C. P., McAinsh, M. R., Allen, G. J., Sanders, D. & Hetherington, A. M. Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc. Natl Acad. Sci. USA. 95, 15837–15842 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Xu, X. et al. Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 promoters activity in Arabidopsis. Plant Cell 19, 3474–3490 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Love, J., Dodd, A. N. & Webb, A. A. R. Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell 16, 956–966 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Fogelmark, K. & Troein, C. Rethinking transcriptional activation in the Arabidopsis circadian clock. PLoS Comput. Biol. 10, e1003705 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Whalley, H. J. et al. Transcriptomic analysis reveals calcium regulation of specific promoter motifs in Arabidopsis. Plant Cell 23, 4079–4095 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Conklin, P. L., Pallanca, J. E., Last, R. L. & Smirnoff, N. L-ascorbic acid metabolism in the ascorbate deficient Arabidopsis mutant vtc1. Plant Physiol. 115, 1277–1285 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Delk, N. A., Johnson, K. A., Chowdhury, N. I. & Braam, J. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol. 139, 240–253 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Tsai, Y. C., Delk, N. A., Chowdhury, N. I. & Braam, J. Arabidopsis potential calcium sensors regulate nitric oxide levels and the transition to flowering. Plant Signal. Behav. 2, 446–454 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Braam, J. Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc. Natl Acad. Sci. USA. 89, 3213–3216 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    McCormack, E., Tsai, Y. C. & Braam, J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci. 10, 383–389 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Gibbs, D. J. et al. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53, 369–379 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Salomé, P. & McClung, C. R. PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17, 791–803 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Rugnone, M. L. et al. LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator. Proc. Natl Acad. Sci. USA. 110, 12120–12125 (2013).

    Article  PubMed  Google Scholar 

  41. 41.

    McCormack, E. & Braam, J. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol. 159, 585–598 (2003).

    Article  CAS  Google Scholar 

  42. 42.

    La Verde, V., Dominici, P. & Astegno, A. Towards understanding plant calcium signaling through calmodulin-like proteins: a biochemical and structural perspective. Int. J. Mol. Sci. 19, 1331 (2018).

    Article  PubMed Central  Google Scholar 

  43. 43.

    Zimmermann, P. et al. ExpressionData – A public resource of high quality curated datasets representing gene expression across anatomy, development and experimental conditions. BioData Mining 7, 18 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kosugi, S., Suzuka, I. & Ohashi, Y. Two of three promoter elements identified in a rice gene for proliferating cell nuclear antigen are essential for meristematic tissue-specific expression. Plant J. 7, 877–886 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Hazen, S. P. et al. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc. Natl Acad. Sci. USA. 102, 10387–10392 (2005).

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Ding, Z., Millar, A. J., Davis, A. M. & Davis, S. J. TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock. Plant Cell. 19, 1522–1536 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Mart¡, M. C., Stancombe, M. A. & Webb, A. A. R. Cell- and stimulus type-specific intracellular free Ca2+ signals in Arabidopsis. Plant Physiol. 163, 625–634 (2013).

    Article  CAS  Google Scholar 

  48. 48.

    Ramakers, C., Ruijter, J. M., Lekanne-Deprez, R. H. & Moorman, A. F. M. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by BBSRC UK research grants BBSRC BB/D010381/1 (A.N.D.), BB/D017904/1 (F.R.) BB/M00113X/1 (H.J.H.) awarded to (A.A.R.W.), Research Studentship (K.H.) and BBSRC Industrial Case (T.H.). A Swiss Science Foundation Award (PBZHP3-123289) and the Isaac Newton Trust Cambridge (M.C.M.R. and S.A.), the National Science Foundation under Grant No. MCB 0817976 (Y-C.T. and J.B.), a Royal Society Grant RG081257 and Corpus Christi College, Cambridge Junior Research Fellowship (M.J.G.), a Cordenadoria de Apoio ao Ensino Superior Brazil studentship (C.T.H.), IEF Marie Curie (Project No. 272186) (M.C.M.R.), a Broodbank Fellowship (M.C.M.R.), a Malaysian Government Studentship (N.I.M-H.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors are very grateful to the unnamed laboratories who provided (un)published material for the screen.

Author information

Affiliations

Authors

Contributions

M.C.M.R., K.E.H., M.J.G., S.A., C.T.H., N.I.M-N., F.C.R., T.J.H., H.J.J., and A.N.D. performed the experiments and analysed the data. The effects of Ca2+ on circadian gene expression experiments were designed by M.J.G. and M.C.M.R. and performed by them with K.E.H., S.A., C.T.H., F.C.R. and A.N.D. Reverse genetic screening was performed by K.E.H. Analysis of cml23/cml24 mutants was performed by M.C.M.R., K.E.H., N.I.M-N., T.J.H. and H.J.J. Y-C.T. provided lines before publication and advice. M.C.M.R., K.E.H. and A.A.R.W. wrote the manuscript. M.H., I.A.C., J.M.D., J.B. and A.A.R.W. managed the project, advised on interpretation and obtained the funding.

Corresponding author

Correspondence to Alex A. R. Webb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Methods, Supplementary Statistical Parameters, Supplementary References and Supplementary Figures 1–6

Reporting Summary

Supplementary Table 2

Reverse genetic screen of Ca2+ -signalling related mutants.

Supplementary Table 3

Circadian period estimates of leaf movement for characterization of the genetic relationship between CML23/CML24 and the clock genes. Relative to Figure 5, 6 and Supplementary Figure 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martí Ruiz, M.C., Hubbard, K.E., Gardner, M.J. et al. Circadian oscillations of cytosolic free calcium regulate the Arabidopsis circadian clock. Nature Plants 4, 690–698 (2018). https://doi.org/10.1038/s41477-018-0224-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing