Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family

Abstract

Pectin is one of the three key cell wall polysaccharides in land plants and consists of three major structural domains: homogalacturonan, rhamnogalacturonan I (RG-I) and RG-II. Although the glycosyltransferase required for the synthesis of the homogalacturonan and RG-II backbone was identified a decade ago, those for the synthesis of the RG-I backbone, which consists of the repeating disaccharide unit [→2)-α-l-Rha-(1 → 4)-α-d-GalUA-(1→], have remained unknown. Here, we report the identification and characterization of Arabidopsis RG-I:rhamnosyltransferases (RRTs), which transfer the rhamnose residue from UDP-β-l-rhamnose to RG-I oligosaccharides. RRT1, which is one of the four Arabidopsis RRTs, is a single-spanning transmembrane protein, localized to the Golgi apparatus. RRT1 was highly expressed during formation of the seed coat mucilage, which is a specialized cell wall with abundant RG-I. Loss-of-function mutation in RRT1 caused a reduction in the level of RG-I in the seed coat mucilage. The RRTs belong to a novel glycosyltransferase family, now designated GT106. This is a large plant-specific family, and glycosyltransferases in this family seem to have plant-specific roles, such as biosynthesis of plant cell wall polysaccharides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression analysis of At5g15740 (RRT1).
Fig. 2: The phenotype and chemotype of the rrt1 mutant.
Fig. 3: RRT1 encodes a RRT.
Fig. 4: RRT1 represents a new glycosyltransferase family: GT106.

Similar content being viewed by others

References

  1. Anderson, C. T. We be jammin’: an update on pectin biosynthesis, trafficking and dynamics. J. Exp. Bot. 67, 495–502 (2016).

    Article  PubMed  CAS  Google Scholar 

  2. Atmodjo, M. A., Hao, Z. & Mohnen, D. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 64, 747–779 (2013).

    Article  PubMed  CAS  Google Scholar 

  3. Ndeh, D. et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544, 65–70 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mikshina, P. V., Petrova, A. A. & Gorshkova, T. A. Functional diversity of rhamnogalacturonans I. Russ. Chem. Bull. 64, 1014–1023 (2015).

    Article  CAS  Google Scholar 

  5. Vincken, J. P. et al. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol. 132, 1781–1789 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sterling, J. D. et al. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc. Natl Acad. Sci. USA 103, 5236–5241 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. Caffall, K. H., Pattathil, S., Phillips, S. E., Hahn, M. G. & Mohnen, D. Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa. Mol. Plant 2, 1000–1014 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Kong, Y. et al. GALACTURONOSYLTRANSFERASE-LIKE5 is involved in the production of Arabidopsis seed coat mucilage. Plant Physiol. 163, 1203–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. North, H. M., Berger, A., Saez-Aguayo, S. & Ralet, M. C. Understanding polysaccharide production and properties using seed coat mutants: future perspectives for the exploitation of natural variants. Ann. Bot. 114, 1251–1263 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Uehara, Y. et al. Biochemical characterization of rhamnosyltransferase involved in biosynthesis of pectic rhamnogalacturonan I in plant cell wall. Biochem. Biophys. Res. Commun. 486, 130–136 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Western, T. L. et al. MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiol. 134, 296–306 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Coutinho, P. M., Deleury, E., Davies, G. J. & Henrissat, B. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307–317 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. Usadel, B., Kuschinsky, A. M., Rosso, M. G., Eckermann, N. & Pauly, M. RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Plant Physiol. 134, 286–295 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Belmonte, M. F. et al. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc. Natl Acad. Sci. USA 110, E435–E444 (2013).

    Article  PubMed  Google Scholar 

  15. Uemura, T. et al. Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct. Funct. 29, 49–65 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. Tamura, K., Shimada, T., Kondo, M., Nishimura, M. & Hara-Nishimura, I. KATAMARI1/MURUS3 is a novel Golgi membrane protein that is required for endomembrane organization in Arabidopsis. Plant Cell 17, 1764–1776 (2004).

    Article  CAS  Google Scholar 

  17. Ogawa-Ohnishi, M. & Matsubayashi, Y. Identification of three potent hydroxylprolin O-galactosyltransferases in Arabidopsis. Plant J. 81, 736–746 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Finn, R. D. et al. InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. Lira-Navarrete, E. et al. Structural insights into the mechanism of protein O-fucosylation. PLoS ONE 6, e25365 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hansen, A. F., Harholt, J., Oikawa, A. & Scheller, H. V. Plant glycosyltransferases beyond CAZy: a perspective on DUF families. Front. Plant Sci. 3, 59 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang, Y., Mortimer, J. C., Davis, J., Dupree, P. & Keegstra, K. Identification of an additional protein involved in mannan biosynthesis. Plant J. 73, 105–117 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Neumetzler, L. et al. The FRIABLE1 gene product affects cell adhesion in Arabidopsis. PLoS ONE 7, e42914 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Stonebloom, S. et al. A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans. BMC Plant Biol. 16, 90 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Voxeur, A., André, A., Breton, C. & Lerouge, P. Identification of putative rhamnogalacturonan-II specific glycosyltransferases in Arabidopsis using a combination of bioinformatics approaches. PLoS ONE 7, e51129 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kulkarni, A. R. et al. The ability of land plants to synthesize glucuronoxylans predates the evolution of tracheophytes. Glycobiology 22, 439–451 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Roberts, A. W., Roberts, E. M. & Haigler, C. H. Moss cell walls: structure and biosynthesis. Front. Plant Sci. 3, 166 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Domozych, D. S. et al. Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol. 165, 105–118 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. O’Rourke, C., Gregson, T., Murray, L., Sadler, I. H. & Fry, S. C. Sugar composition of the pectic polysaccharides of charophytes, the close algal relatives of land-plants: presence of 3-O-methyl-d-galactose residues. Ann. Bot. 116, 225–236 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sørensen, I. et al. The charophycean green algae provide insights into the early origins of plant cell walls. Plant J. 68, 201–211 (2011).

    Article  PubMed  CAS  Google Scholar 

  31. Abel, S. & Theologis, A. Transient transformation of Arabidosis leaf protoplasts: a versatile experimental system to study gene expression. Plant J. 5, 421–427 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. Kumakura, N., Otsuki, H., Tsuzuki, M., Takeda, A. & Watanabe, Y. Arabidopsis AtRRP44A is the functional homolog of Rrp44/Dis3, an exosome component, is essential for viability and is required for RNA processing and degradation. PLoS ONE 11, e79219 (2013).

    Article  CAS  Google Scholar 

  33. McFarlane, H. E., Gendre, D. & Western, T. L. Seed coat ruthenium red staining assay. Bio-Protocol 4, e1096 (2014).

    Article  Google Scholar 

  34. Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 66, 123–143 (2003).

    Article  PubMed  Google Scholar 

  35. Yu, L. et al. CELLULOSE SYNTHASE-LIKE A2, a glucomannan synthase, is involved in maintaining adherent mucilage structure in Arabidopsis seed. Plant Physiol. 164, 1842–1856 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Voiniciuc, C. Quantification of the mucilage detachment from Arabidopsis seeds. Bio-Protocol 6, e1802 (1994).

    Google Scholar 

  37. Jonathan, S. G., Marie-Jeanne, C., Marie-Christine, R., Georg, J. S. & Helen, M. N. Dissecting seed mucilage adherence mediated by FEI2 and SOS5. Front. Plant Sci. 7, 1073 (2016).

    Article  Google Scholar 

  38. Seki, M. et al. Functional annotation of a full-length Arabidopsis cDNA collection. Science 296, 141–145 (2002).

    Article  PubMed  Google Scholar 

  39. Holsters, M. et al. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163, 181–187 (1978).

    Article  PubMed  CAS  Google Scholar 

  40. Akita, K., Ishimizu, T., Tsukamoto, T., Ando, T. & Hase, S. Successive glycosyltransfer activity and enzymatic characterization of pectic polygalacturonate 4-α-galacturonosyltransferase solubilized from pollen tubes of Petunia axillaris using pyridylaminated oligogalacturonates as substrates. Plant Physiol. 130, 374–379 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ohashi, T., Hasegawa, Y., Misaki, R. & Fujiyama, K. Substrate preference of citrus naringenin rhamnosyltransferases and their application to flavonoid glycoside production in fission yeast. Appl. Microbiol. Biotechnol. 100, 687–696 (2016).

    Article  PubMed  CAS  Google Scholar 

  42. Ohashi, T., Cramer, N., Ishimizu, T. & Hase, S. Preparation of UDP-galacturonic acid using UDP-sugar pyrophosphorylase. Anal. Biochem. 352, 182–187 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. Ishimizu, T., Uchida, T., Sano, K. & Hase, S. Chemical synthesis of uridine 5′-diphospho-α-d-xylopyranose. Tetrahedron Assym. 16, 309–311 (2005).

    Article  CAS  Google Scholar 

  44. Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article  PubMed  CAS  Google Scholar 

  46. Schwacke, R. et al. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131, 16–26 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Tominaga for technical assistance. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (no. 15H01241 and 18H05495 to T.I.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by a Grant-in-Aid for Scientific Research (no. 15H05776 to I.H.-N.) from the Japan Society for the Promotion of Science. The study was also supported by the Program for the Third-Phase R-GIRO Research from the Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, to T.I.

Author information

Authors and Affiliations

Authors

Contributions

Y. Takenaka and T.I. conceived and designed the experiments. Y. Takenaka and K.K. carried out most of the experiments. M.O.-O. and Y.M. contributed to the heterologous expression of proteins and the subcellular localization analysis. K.T., H.K., K.Y. and A.T. contributed to the biochemical assay of the enzymes. T. Kunieda and I.H.-N. contributed to the gene expression analysis. T. Kuroha and K.N. performed the sugar compositional analysis. Y. Takeda performed the size-exclusion chromatography of polysaccharides. Y. Takenaka, K.K. and T.I. wrote the manuscript with contributions from all of the authors.

Corresponding author

Correspondence to Takeshi Ishimizu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6 and Supplementary Tables 1–2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takenaka, Y., Kato, K., Ogawa-Ohnishi, M. et al. Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family. Nature Plants 4, 669–676 (2018). https://doi.org/10.1038/s41477-018-0217-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0217-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing