Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases

Abstract

In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins serve as intracellular immune receptors. Defence signalling by NLRs often requires the formation of NLR heteropairs. Our knowledge of the molecular mechanism regulating this process is limited. In a reverse genetic screen to identify the partner of the Arabidopsis typical NLR, SUPRESSOR OF NPR1, CONSTITUTIVE 1 (SNC1), we discovered three NLRs that are redundantly required for SNC1-mediated defence, which were named SIDEKICK SNC1 1 (SIKIC1), SIKIC2 and SIKIC3. Immunoprecipitation–mass spectrometry analyses revealed that SIKIC2 physically associates with SNC1. We also uncovered that the protein level of SIKIC2 is under the control of two previously uncharacterized redundant E3 ubiquitin ligases MUSE1 and MUSE2. As SNC1 accumulation has previously been shown to be regulated by the E3 ubiquitin ligase SCFCPR1, this report provides evidence that the homeostasis of individual components of partnered typical NLRs is subjected to differential regulation via ubiquitin-mediated protein degradation.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: SIKIC1, SIKIC2 and SIKIC3 are redundantly required for snc1-mediated autoimmunity.
Fig. 2: muse1-1 enhances immunity in the mos4snc1 and snc1 background.
Fig. 3: MUSE1 exhibits E3 ubiquitin ligase activity.
Fig. 4: MUSE1 and MUSE2 have overlapping functions.
Fig. 5: MUSE1 and MUSE2 are specifically involved in SNC1-mediated immunity.
Fig. 6: MUSE1 and MUSE2 negatively regulate the accumulation of SIKIC proteins.

References

  1. Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. Dangl, J. L., Horvath, D. M. & Staskawicz, B. J. Pivoting the plant immune system from dissection to deployment. Science 341, 746–751 (2013).

    Article  PubMed  CAS  Google Scholar 

  3. Macho, A. P. & Zipfel, C. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54, 263–272 (2014).

    Article  PubMed  CAS  Google Scholar 

  4. Cunnac, S., Lindeberg, M. & Collmer, A. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr. Opin. Microbiol. 12, 53–60 (2009).

    Article  PubMed  CAS  Google Scholar 

  5. Maekawa, T., Kufer, T. A. & Schulze-Lefert, P. NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 12, 817–826 (2011).

    Article  PubMed  CAS  Google Scholar 

  6. Li, X., Kapos, P. & Zhang, Y. NLRs in plants. Curr. Opin. Immunol. 32, 114–121 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. Franchi, L., Eigenbrod, T., Munoz-Planillo, R. & Nunez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241–247 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bentham, A., Burdett, H., Anderson, P. A., Williams, S. J. & Kobe, B. Animal NLRs provide structural insights into plant NLR function. Ann. Bot. 119, 827–702 (2017).

    PubMed  Google Scholar 

  9. Griebel, T., Maekawa, T. & Parker, J. E. NOD-like receptor cooperativity in effector-triggered immunity. Trends Immunol. 35, 562–570 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. Kroj, T., Chanclud, E., Michel-Romiti, C., Grand, X. & Morel, J. B. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol. 210, 618–626 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sarris, P. F. et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161, 1089–1100 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Le Roux, C. et al. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161, 1074–1088 (2015).

    Article  PubMed  CAS  Google Scholar 

  13. Williams, S. J. et al. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344, 299–303 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. Saucet, S. B. et al. Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4. Nat. Commun. 6, 6338 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Cesari, S. et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell. 25, 1463–1481 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cesari, S. et al. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J. 33, 1941–1959 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Li, X., Clarke, J. D., Zhang, Y. & Dong, X. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol. Plant Microbe Interact. 14, 1131–1139 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, Y., Goritschnig, S., Dong, X. & Li, X. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell. 15, 2636–2646 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cheng, Y. T. et al. Stability of plant immune-receptor resistance proteins is controlled by SKP1–CULLIN1–F-box (SCF)-mediated protein degradation. Proc. Natl Acad. Sci. USA 108, 14694–14699 (2011).

    Article  PubMed  CAS  Google Scholar 

  20. Gou, M. et al. The F-box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation. Plant J. 69, 411–420 (2012).

    Article  PubMed  CAS  Google Scholar 

  21. Alcazar, R. & Parker, J. E. The impact of temperature on balancing immune responsiveness and growth in Arabidopsis. Trends Plant Sci. 16, 666–675 (2011).

    Article  PubMed  CAS  Google Scholar 

  22. Johnson, K. C., Dong, O. X., Huang, Y. & Li, X. A rolling stone gathers no moss, but resistant plants must gather their moses. Cold Spring Harb. Symp. Quant. Biol. 77, 259–268 (2012).

    Article  PubMed  CAS  Google Scholar 

  23. Huang, Y. et al. Mitochondrial AtPAM16 is required for plant survival and the negative regulation of plant immunity. Nat. Commun. 4, 2558 (2013).

    Article  PubMed  CAS  Google Scholar 

  24. Cheng, Y. T. & Li, X. Ubiquitination in NB-LRR-mediated immunity. Curr. Opin. Plant Biol. 15, 392–399 (2012).

    Article  PubMed  CAS  Google Scholar 

  25. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. Smalle, J. & Vierstra, R. D. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55, 555–590 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. Roberts, M., Tang, S., Stallmann, A., Dangl, J. L. & Bonardi, V. Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor. PLoS Genet. 9, e1003465 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lolle, S. et al. Matching NLR immune receptors to autoimmunity in camta3 mutants using antimorphic NLR alleles. Cell Host Microbe 21, 518–529.e4 (2017).

    Article  PubMed  CAS  Google Scholar 

  29. Noel, L. et al. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell. 11, 2099–2112 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yang, S. & Hua, J. A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell. 16, 1060–1071 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wang, Z. P. et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Xu, F. et al. Two N-terminal acetyltransferases antagonistically regulate the stability of a NOD-like receptor in Arabidopsis. Plant Cell. 27, 1547–1562 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xu, F., Cheng, Y. T., Kapos, P., Huang, Y. & Li, X. P-loop-dependent NLR SNC1 can oligomerize and activate immunity in the nucleus. Mol. Plant 7, 1801–1804 (2014).

    Article  PubMed  CAS  Google Scholar 

  34. Palma, K. et al. Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms. Genes Dev. 21, 1484–1493 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl Acad. Sci. USA 106, 10171–10176 (2009).

    Article  PubMed  Google Scholar 

  36. Zhao, Q. et al. A plant-specific in vitro ubiquitination analysis system. Plant J. 74, 524–533 (2013).

    Article  PubMed  CAS  Google Scholar 

  37. Dong, C. H., Agarwal, M., Zhang, Y., Xie, Q. & Zhu, J. K. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl Acad. Sci. USA 103, 8281–8286 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. Zhang, Y. et al. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell. 19, 1912–1929 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Peng, Y. J. et al. A RING-type E3 ligase controls anther dehiscence by activating the jasmonate biosynthetic pathway gene DEFECTIVE IN ANTHER DEHISCENCE1 in Arabidopsis. Plant J. 74, 310–327 (2013).

    Article  PubMed  CAS  Google Scholar 

  40. Xie, Q. et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419, 167–170 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. Aarts, N. et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl Acad. Sci. USA 95, 10306–10311 (1998).

    Article  PubMed  CAS  Google Scholar 

  42. Zhang, Z. et al. Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11, 253–263 (2012).

    Article  PubMed  CAS  Google Scholar 

  43. Xu, F. et al. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity. PLoS Pathog. 10, e1004312 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhu, Z. et al. Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc. Natl Acad. Sci. USA 107, 13960–13965 (2010).

    Article  PubMed  Google Scholar 

  45. Sinapidou, E. et al. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J. 38, 898–909 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. Xu, F. et al. Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TNL-encoding neighbour. Sci. Rep. 5, 8792 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lee, S. K. et al. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics 181, 1627–1638 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhai, C. et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol. 189, 321–334 (2011).

    Article  PubMed  CAS  Google Scholar 

  49. Loutre, C. et al. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J. 60, 1043–1054 (2009).

    Article  PubMed  CAS  Google Scholar 

  50. Brotman, Y. et al. Dual resistance of melon to Fusarium oxysporum races 0 and 2 and to Papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. Mol. Plant 6, 235–238 (2013).

    Article  PubMed  CAS  Google Scholar 

  51. Noutoshi, Y. et al. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J. 43, 873–888 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. Yang, H. et al. A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. Plant J. 63, 283–296 (2010).

    Article  PubMed  CAS  Google Scholar 

  53. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  PubMed  CAS  Google Scholar 

  54. Xie, K., Zhang, J. & Yang, Y. Genome-wide prediction of highly specific guide RNA spacers for CRISPR–Cas9-mediated genome editing in model plants and major crops. Mol. Plant 7, 923–926 (2014).

    Article  PubMed  CAS  Google Scholar 

  55. Zhang, Y., Glazebrook, J. & Li, X. Identification of components in disease-resistance signaling in Arabidopsis by map-based cloning. Methods Mol. Biol. 354, 69–78 (2007).

    PubMed  CAS  Google Scholar 

  56. Winter, D. et al. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2, e718 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Schmid, M. et al. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37, 501–506 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. Huang, Y. et al. An E4 ligase facilitates polyubiquitination of plant immune receptor resistance proteins in Arabidopsis. Plant Cell. 26, 485–496 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Li, Y. et al. SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity. PLoS Pathog. 6, e1001111 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Proost, S. et al. PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res. 43, D974–D981 (2015).

    Article  PubMed  CAS  Google Scholar 

  61. Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

    Article  PubMed  CAS  Google Scholar 

  62. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Abascal, F., Zardoya, R. & Posada, D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Xie (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) for sharing the pET28-AtUBA2-His construct, X. Deng (Peking University/Yale University) for sharing the pGEX-GST-AtUBC8 construct for protein expression, J. Stuttmann (Martin Luther University, Halle-Wittenberg) for sharing the seeds of N.benthaniana eds1 and K. Kirchsteiger and M. Estelle (UCSD) for offering insights in the in vitro ubiquitination assay. Y. Li (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) is thanked for Illumina sequencing data analyses. Y. Qiu (University of British Columbia) is thanked for helping with the phylogenetic analyses of MUSE1. We are grateful to N. Zheng and W. Xing (University of Washington) for enlightening discussions about MUSE1 secondary structure prediction and E3 functions. The Arabidopsis Biological Resource Center is acknowledged for providing the muse1-7 and muse2-1 knockout T-DNA mutant seeds. This work was financially supported by the Natural Sciences and Engineering Research Council (NSERC) Discovery program of Canada and Canadian Foundation for Innovation (CFI) (to X.L.), the Chinese Scholarship Council (to Y.W., Y.H., S.X. and X.C.), the Dewar Memorial fund (to X.L.), NSERC Graduate scholarships (to K.A. and K.C.M.J.) and the UBC Four-Year Fellowship (to F.X., K.C.M.J. and O.X.D.).

Author information

Authors and Affiliations

Authors

Contributions

O.X.D. and K.A. performed most of the described experiments under the supervision of X.L. F.X. performed the SNC1/snc1 IP. Y.W. performed the crude mapping of muse1-1. L.L. performed the MS analyses. S.C. and Y.Z. analysed the MS and Illumina data sets. K.C.M.J., Y.H., S.X. and X.C. mapped and identified five additional mutant alleles of muse1. Y.L. constructed the library for Illumina sequencing. E.R. and M.P. shared their dominant-negative TNL collection. O.X.D. and X.L. wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13 and Supplementary Tables 1–4.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, O.X., Ao, K., Xu, F. et al. Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases. Nature Plants 4, 699–710 (2018). https://doi.org/10.1038/s41477-018-0216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0216-8

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing