Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification and analysis of adenine N6-methylation sites in the rice genome

Abstract

DNA N6-methyladenine (6mA) is a non-canonical DNA modification that is present at low levels in different eukaryotes1,2,3,4,5,6,7,8, but its prevalence and genomic function in higher plants are unclear. Using mass spectrometry, immunoprecipitation and validation with analysis of single-molecule real-time sequencing, we observed that about 0.2% of all adenines are 6mA methylated in the rice genome. 6mA occurs most frequently at GAGG motifs and is mapped to about 20% of genes and 14% of transposable elements. In promoters, 6mA marks silent genes, but in bodies correlates with gene activity. 6mA overlaps with 5-methylcytosine (5mC) at CG sites in gene bodies and is complementary to 5mC at CHH sites in transposable elements. We show that OsALKBH1 may be potentially involved in 6mA demethylation in rice. The results suggest that 6mA is complementary to 5mC as an epigenomic mark in rice and reinforce a distinct role for 6mA as a gene expression-associated epigenomic mark in eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of 6mA in the rice genome.
Fig. 2: 6mA in gene promoter and body regions correlates with different levels of gene expression.
Fig. 3: Comparison of 6mA distribution detected by IP–seq with two different antibodies (SYSY and Abcam) with other epigenomic marks in rice genes.
Fig. 4: 6mA levels and distribution in rice transposable elements and repeats.
Fig. 5: Osalkbh1 mutations result in increased 6mA levels.
Fig. 6: The overall structure and active site of OsALKBH1 in rice.

Similar content being viewed by others

References

  1. Fu, Y. et al. N 6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161, 879–892 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Greer, E. L. et al. DNA methylation on N 6-adenine in C. elegans. Cell 161, 868–878 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zhang, G. et al. N 6-methyladenine DNA modification in Drosophila. Cell 161, 893–906 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Koziol, M. J. et al. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat. Struct. Mol. Biol. 23, 24–30 (2016).

    Article  PubMed  CAS  Google Scholar 

  5. Liu, J. et al. Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat. Commun. 7, 13052 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wu, T. P. et al. DNA methylation on N 6-adenine in mammalian embryonic stem cells. Nature 532, 329–333 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mondo, S. J. et al. Widespread adenine N 6-methylation of active genes in fungi. Nat. Genet. 49, 964–968 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. Wang, Y., Chen, X., Sheng, Y., Liu, Y. & Gao, S. N 6-adenine DNA methylation is associated with the linker DNA of H2A.Z-containing well-positioned nucleosomes in Pol II-transcribed genes in Tetrahymena. Nucleic Acids Res. 45, 11594–11606 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yao, B. et al. DNA N 6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat. Commun. 8, 1122 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ye, P. et al. MethSMRT: an integrative database for DNA N 6-methyladenine and N 4-methylcytosine generated by single-molecular real-time sequencing. Nucleic Acids Res. 45, D85–D89 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Legrand, C. et al. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Res. 27, 1589–1596 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tan, F. et al. Analysis of chromatin regulators reveals specific features of rice DNA methylation pathways. Plant Physiol. 171, 2041–2054 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li, X. et al. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20, 259–276 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang, T., Zhang, W. & Jiang, J. Genome-wide nucleosome occupancy and positioning and their impact on gene expression and evolution in plants. Plant Physiol. 168, 1406–1416 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sasaki, S. et al. Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites. Science 323, 401–404 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    Article  PubMed  CAS  Google Scholar 

  17. Li, X. et al. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics 13, 300 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang, Y., Wang, X., Lee, T.-H., Mansoor, S. & Paterson, A. H. Gene body methylation shows distinct patterns associated with different gene origins and duplication modes and has a heterogeneous relationship with gene expression in Oryza sativa (rice). New Phytol. 198, 274–283 (2013).

    Article  PubMed  CAS  Google Scholar 

  19. Su, Z., Han, L. & Zhao, Z. Conservation and divergence of DNA methylation in eukaryotes: new insights from single base-resolution DNA methylomes. Epigenetics 6, 134–140 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lee, T.-F., Zhai, J. & Meyers, B. C. Conservation and divergence in eukaryotic DNA methylation. Proc. Natl Acad. Sci. USA 107, 9027–9028 (2010).

    Article  PubMed  Google Scholar 

  21. Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Feng, S. et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl Acad. Sci. USA 107, 8689–8694 (2010).

    Article  PubMed  Google Scholar 

  23. Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhu, C. & Yi, C. Switching demethylation activities between AlkB family RNA/DNA demethylases through exchange of active-site residues. Angew. Chem. Int. Ed. Engl. 53, 3659–3662 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. Yu, B. et al. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB. Nature 439, 879–884 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. Sundheim, O. et al. Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO J. 25, 3389–3397 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yang, C.-G. et al. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature 452, 961–965 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Feng, C. et al. Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J. Biol. Chem. 289, 11571–11583 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pastore, C. et al. Crystal structure and RNA binding properties of the RNA recognition motif (RRM) and AlkB domains in human AlkB homolog 8 (ABH8), an enzyme catalyzing tRNA hypermodification. J. Biol. Chem. 287, 2130–2143 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. O’Brown, Z. K. & Greer, E. L. N 6-methyladenine: a conserved and dynamic DNA mark. Adv. Exp. Med. Biol. 945, 213–246 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhang, J. et al. Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc. Natl Acad. Sci. USA 113, E5163–E5171 (2016).

    Article  PubMed  CAS  Google Scholar 

  35. Lim, J.-Q. et al. BatMeth: improved mapper for bisulfite sequencing reads on DNA methylation. Genome Biol. 13, R82 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhang, W. et al. High-resolution mapping of open chromatin in the rice genome. Genome Res. 22, 151–162 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mielecki, D. et al. Novel AlkB dioxygenases—alternative models for in silico and in vivo studies. PLoS ONE 7, e30588 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lei, Y. et al. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol. Plant 7, 1494–1496 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. Li, J., Sun, Y., Du, J., Zhao, Y. & Xia, L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant 10, 526–529 (2017).

    Article  PubMed  CAS  Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  43. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Zhao for providing the Cas9–single gRNA system, the staff from BL17U/BL19U1/beamline of the National Centre for Protein Sciences Shanghai (NCPSS) at the Shanghai Synchrotron Radiation Facility for assistance during data collection, and the research associates at the Centre for Protein Research, Huazhong Agricultural University, for technical support. This work was supported by funds from the National Key Research and Development Program of China (2016YFD0100802), the National Science Foundation of China (grants 31730049, 31571256 and 31270787), the Program for New Century Excellent Talents in University (NCET-13-0811), the Fundamental Research Funds for the Central Universities (programme no. 2662015PY228, 2013PY063 and 2014PY017), and supported by Huazhong Agricultural University Scientific and Technological Self-innovation Foundation (programme no. 2016RC003).

Author information

Authors and Affiliations

Authors

Contributions

C.Z. performed the experiments to analyse rice genome-wide 6mA. C.W. and T.P. performed the molecular cloning and enzyme assays. H.L. conducted the 6mA mass spectrometry analysis. Q.L. and Y.Z. participated in sampling and experimentation. Y.G., T.P. and Z.Z. performed protein purification, crystallization, X-ray data acquisition and structure refinement and analysis. D.-X.Z., C.Z., Z.Z., Q.Z., J.S., J.Z. and L.C. analysed the data. D.-X.Z. coordinated and supervised the project and wrote the paper with input from C.Z. and Z.Z.

Corresponding authors

Correspondence to Zhixiong Zeng or Dao-Xiu Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6 and Supplementary Tables 1–5.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Wang, C., Liu, H. et al. Identification and analysis of adenine N6-methylation sites in the rice genome. Nature Plants 4, 554–563 (2018). https://doi.org/10.1038/s41477-018-0214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0214-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing