Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Commonalities and differences of chloroplast translation in a green alga and land plants

Abstract

Chloroplast gene expression is a fascinating and highly regulated process, which was mainly studied on specific genes in a few model organisms including the unicellular green alga Chlamydomonas (Chlamydomonas reinhardtii) and the embryophyte (land) plants tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). However, a direct plastid genome-wide interspecies comparison of chloroplast gene expression that includes translation was missing. We adapted a targeted chloroplast ribosome profiling approach to quantitatively compare RNA abundance and translation output between Chlamydomonas, tobacco and Arabidopsis. The re-analysis of established chloroplast mutants confirmed the capability of the approach by detecting known as well as previously undetected translation defects (including the potential photosystem II assembly-dependent regulation of PsbH). Systematic comparison of the algal and land plant wild-type gene expression showed that, for most genes, the steady-state translation output is highly conserved among the three species, while the levels of transcript accumulation are more distinct. Whereas in Chlamydomonas transcript accumulation and translation output are closely balanced, this correlation is less obvious in embryophytes, indicating more pronounced translational regulation. Altogether, this suggests that green algae and land plants evolved different strategies to achieve conserved levels of protein synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microarray-based ribosome profiling confirms known and discovers novel effects in established chloroplast gene expression mutants.
Fig. 2: High correlation of transcript accumulation and translation output between photoautotrophically and mixotrophically grown Chlamydomonas cells.
Fig. 3: Chloroplast translation output is conserved between Chlamydomonas, tobacco and Arabidopsis.
Fig. 4: Different degrees of correlation between transcript and FP abundances in Chlamydomonas and land plants.
Fig. 5: Translational adjustments of the protein synthesis output of chloroplast-encoded ATP synthase subunits.
Fig. 6: Translation output is not directly determined by codon usage.
Fig. 7: Ribosome FPs are heterogeneously distributed over ORFs with similar patterns in conserved reading frames of Chlamydomonas and land plants.

Similar content being viewed by others

References

  1. Bock, R.(ed) Cell and Molecular Biology of Plastids (Springer-Verlag Berlin, Heidelberg, 2007).

    Book  Google Scholar 

  2. Gray, M. W. Origin and evolution of organelle genomes. Curr. Opin. Genet. Dev. 3, 884–890 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. Zoschke, R. & Bock, R. Chloroplast translation: Structural and functional organization, operational control and regulation. Plant Cell 30, 745–770 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barkan, A. Expression of plastid genes: Organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol. 155, 1520–1532 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Woodson, J. D. & Chory, J. Coordination of gene expression between organellar and nuclear genomes. Nat. Rev. Genet. 9, 383–395 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Choquet, Y. & Wollman, F. A. in The Chlamydomonas Sourcebook 2nd edn (eds E.H. Harris et al.) 1027–1064 (Academic Press, Oxford, 2009).

  7. Nickelsen, J., Bohne, A.V. & Westhoff, P. in Plastid Biology. Advances in Plant Biology (eds S. Theg & F.A. Wollman) Chloroplast Gene Expression—Translation (Springer, New York, NY, 2014).

  8. Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zoschke, R., Watkins, K. P. & Barkan, A. A rapid ribosome profiling method elucidates chloroplast ribosome behavior in vivo. Plant Cell 25, 2265–2275 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chotewutmontri, P. & Barkan, A. Dynamics of chloroplast translation during chloroplast differentiation in maize. PLoS Genet. 12, e1006106 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zoschke, R. & Barkan, A. Genome-wide analysis of thylakoid-bound ribosomes in maize reveals principles of cotranslational targeting to the thylakoid membrane. Proc. Natl Acad. Sci. USA 112, E1678–1687 (2015).

    Article  PubMed  CAS  Google Scholar 

  13. Lukoszek, R., Feist, P. & Ignatova, Z. Insights into the adaptive response of Arabidopsis thaliana to prolonged thermal stress by ribosomal profiling and RNA-Seq. BMC Plant Biol. 16, 221 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gawronski, P., Jensen, P. E., Karpinski, S., Leister, D. & Scharff, L. B. Plastid ribosome pausing is induced by multiple features and is linked to protein complex assembly. Plant Physiol. 176, 2557–2569 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ingolia, N. T. Ribosome profiling: New views of translation, from single codons to genome scale. Nat. Rev. Genet. 15, 205–213 (2014).

    Article  PubMed  CAS  Google Scholar 

  16. Schwarz, C., Elles, I., Kortmann, J., Piotrowski, M. & Nickelsen, J. Synthesis of the D2 protein of photosystem II in Chlamydomonas is controlled by a high molecular mass complex containing the RNA stabilization factor Nac2 and the translational activator RBP40. Plant Cell 19, 3627–3639 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Nickelsen, J., Fleischmann, M., Boudreau, E., Rahire, M. & Rochaix, J. D. Identification of cis-acting RNA leader elements required for chloroplast psbD gene expression in Chlamydomonas. Plant Cell 11, 957–970 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Boudreau, E., Nickelsen, J., Lemaire, S. D., Ossenbühl, F. & Rochaix, J. D. The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. Embo J. 19, 3366–3376 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Klinkert, B., Elles, I. & Nickelsen, J. Translation of chloroplast psbD mRNA in Chlamydomonas is controlled by a secondary RNA structure blocking the AUG start codon. Nucleic Acids Res. 34, 386–394 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rott, M. et al. ATP synthase repression in tobacco restricts photosynthetic electron transport, CO2 assimilation, and plant growth by overacidification of the thylakoid lumen. Plant Cell 23, 304–321 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Berry, J. O., Mure, C. M. & Yerramsetty, P. Regulation of Rubisco gene expression in C4 plants. Curr. Opin. Plant Biol. 31, 23–28 (2016).

    Article  PubMed  CAS  Google Scholar 

  22. Kovtun, Y. & Daie, J. End-product control of carbon metabolism in culture-grown sugar beet plants (molecular and physiological evidence on accelerated leaf development and enhanced gene expression). Plant Physiol. 108, 1647–1656 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zoschke, R., Qu, Y., Zubo, Y. O., Börner, T. & Schmitz-Linneweber, C. Mutation of the pentatricopeptide repeat-SMR protein SVR7 impairs accumulation and translation of chloroplast ATP synthase subunits in Arabidopsis thaliana. J. Plant Res. 126, 403–414 (2013).

    Article  PubMed  CAS  Google Scholar 

  24. Grahl, S. et al. The Arabidopsis protein CGLD11 is required for chloroplast ATP synthase accumulation. Mol. Plant 9, 885–899 (2016).

    Article  PubMed  CAS  Google Scholar 

  25. Eberhard, S., Drapier, D. & Wollman, F. A. Searching limiting steps in the expression of chloroplast-encoded proteins: Relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J. 31, 149–160 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. Cavaiuolo, M., Kuras, R., Wollman, F. A., Choquet, Y. & Vallon, O. Small RNA profiling in Chlamydomonas: Insights into chloroplast RNA metabolism. Nucleic Acids Res. 45, 10783–10799 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Maul, J. E. et al. The Chlamydomonas reinhardtii plastid chromosome: Islands of genes in a sea of repeats. Plant Cell 14, 2659–2679 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E. & Tabata, S. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6, 283–290 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. Shinozaki, K. et al. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J. 5, 2043–2049 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ueda, M. et al. Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Mol. Biol. Evol. 25, 1566–1575 (2008).

    Article  PubMed  CAS  Google Scholar 

  31. Schwenkert, S. et al. PsbI affects the stability, function, and phosphorylation patterns of photosystem II assemblies in tobacco. J. Biol. Chem. 281, 34227–34238 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. Swiatek, M. et al. The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell 13, 1347–1367 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Umate, P. et al. Deletion of PsbM in tobacco alters the QB site properties and the electron flow within photosystem II. J. Biol. Chem. 282, 9758–9767 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. Finazzi, G., Drapier, D. & Rappaport, F. in The Chlamydomonas Sourcebook 2nd edn (eds E.H. Harris et al.) 639–670 (Academic Press, Oxford, 2009).

  35. Seelert, H., Dencher, N. A. & Müller, D. J. Fourteen protomers compose the oligomer III of the proton-rotor in spinach chloroplast ATP synthase. J. Mol. Biol. 333, 337–344 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. Li, G. W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ikemura, T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2, 13–34 (1985).

    PubMed  CAS  Google Scholar 

  38. Sugiura, M. Plastid mRNA translation. Methods Mol. Biol. 1132, 73–91 (2014).

    Article  PubMed  CAS  Google Scholar 

  39. Yan, X., Hoek, T. A., Vale, R. D. & Tanenbaum, M. E. Dynamics of translation of single mRNA molecules in vivo. Cell 165, 976–989 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Minai, L., Wostrikoff, K., Wollman, F. A. & Choquet, Y. Chloroplast biogenesis of photosystem II cores involves a series of assembly-controlled steps that regulate translation. Plant Cell 18, 159–175 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Loizeau, K. et al. Small RNAs reveal two target sites of the RNA-maturation factor Mbb1 in the chloroplast of Chlamydomonas. Nucleic Acids Res. 42, 3286–3297 (2014).

    Article  PubMed  CAS  Google Scholar 

  42. Vaistij, F. E., Goldschmidt-Clermont, M., Wostrikoff, K. & Rochaix, J. D. Stability determinants in the chloroplast psbB/T/H mRNAs of Chlamydomonas reinhardtii. Plant J. 21, 469–482 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. Levey, T., Westhoff, P. & Meierhoff, K. Expression of a nuclear-encoded psbH gene complements the plastidic RNA processing defect in the PSII mutant hcf107 in Arabidopsis thaliana. Plant J. 80, 292–304 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. Komenda, J. et al. Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J. Biol. Chem. 279, 48620–48629 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. Iwai, M., Katoh, H., Katayama, M. & Ikeuchi, M. PSII-Tc protein plays an important role in dimerization of photosystem II. Plant Cell Physiol. 45, 1809–1816 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. Liu, X. Q., Xu, H. & Huang, C. Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol. Biol. 23, 297–308 (1993).

    Article  PubMed  CAS  Google Scholar 

  47. Ramundo, S., Rahire, M., Schaad, O. & Rochaix, J. D. Repression of essential chloroplast genes reveals new signaling pathways and regulatory feedback loops in Chlamydomonas. Plant Cell 25, 167–186 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sun, Y. & Zerges, W. Translational regulation in chloroplasts for development and homeostasis. Biochim. Biophys. Acta 1847, 809–820 (2015).

    Article  PubMed  CAS  Google Scholar 

  49. Börner, T., Aleynikova, A. Y., Zubo, Y. O. & Kusnetsov, V. V. Chloroplast RNA polymerases: Role in chloroplast biogenesis. Biochim. Biophys. Acta 1847, 761–769 (2015).

    Article  PubMed  CAS  Google Scholar 

  50. Barkan, A. & Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65, 415–442 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Hammani, K. et al. Helical repeats modular proteins are major players for organelle gene expression. Biochimie 100, 141–150 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. Idoine, A. D., Boulouis, A., Rupprecht, J. & Bock, R. The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii. PLoS ONE 9, e108760 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Nakamura, Y., Gojobori, T. & Ikemura, T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28, 292 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Morton, B. R. Chloroplast DNA codon use: Evidence for selection at the psbA locus based on tRNA availability. J. Mol. Evol. 37, 273–280 (1993).

    Article  PubMed  CAS  Google Scholar 

  55. Morton, B. R. & Levin, J. A. The atypical codon usage of the plant psbA gene may be the remnant of an ancestral bias. Proc. Natl Acad. Sci. USA 94, 11434–11438 (1997).

    Article  PubMed  CAS  Google Scholar 

  56. Nixon, P. J., Michoux, F., Yu, J., Boehm, M. & Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hirose, T. & Sugiura, M. Multiple elements required for translation of plastid atpB mRNA lacking the Shine–Dalgarno sequence. Nucleic Acids Res. 32, 3503–3510 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kuroda, H. et al. Translation of psbC mRNAs starts from the downstream GUG, not the upstream AUG, and requires the extended Shine–Dalgarno sequence in tobacco chloroplasts. Plant Cell Physiol. 48, 1374–1378 (2007).

    Article  PubMed  CAS  Google Scholar 

  59. Scharff, L. B. et al. Shine-Dalgarno sequences play an essential role in the translation of plastid mRNAs in tobacco. Plant Cell 29, 3085–3101 (2017).

    Article  PubMed  CAS  Google Scholar 

  60. Nakamura, M. & Sugiura, M. Translation efficiencies of synonymous codons are not always correlated with codon usage in tobacco chloroplasts. Plant J. 49, 128–134 (2007).

    Article  PubMed  CAS  Google Scholar 

  61. Nakamura, M. & Sugiura, M. Translation efficiencies of synonymous codons for arginine differ dramatically and are not correlated with codon usage in chloroplasts. Gene 472, 50–54 (2011).

    Article  PubMed  CAS  Google Scholar 

  62. Li, G. W., Oh, E. & Weissman, J. S. The anti-Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484, 538–541 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Pechmann, S. & Frydman, J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat. Struct. Mol. Biol. 20, 237–243 (2013).

    Article  PubMed  CAS  Google Scholar 

  64. Schroda, M., Vallon, O., Wollman, F. A. & Beck, C. F. A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11, 1165–1178 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Harris, E. H., Boynton, J. E. & Gillham, N. W. Chloroplast ribosome biogenesis in Chlamydomonas. Selection and characterization of mutants blocked in ribosome formation. J. Cell Biol. 63, 160–179 (1974).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Mettler, T. et al. Systems analysis of the response of photosynthesis, metabolism, and growth to an increase in irradiance in the photosynthetic model organism Chlamydomonas reinhardtii. Plant Cell 26, 2310–2350 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sharp, P. M. & Li, W. H. The codon Adaptation Index—A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Puigbo, P., Bravo, I. G. & Garcia-Vallve, S. E-CAI: A novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinforma. 9, 65 (2008).

    Article  CAS  Google Scholar 

  69. Willmund, F. & Schroda, M. HEAT SHOCK PROTEIN 90C is a bona fide Hsp90 that interacts with plastidic HSP70B in Chlamydomonas reinhardtii. Plant Physiol. 138, 2310–2322 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Liu, C. et al. J-domain protein CDJ2 and HSP70B are a plastidic chaperone pair that interacts with vesicle-inducing protein in plastids 1. Mol. Biol. Cell 16, 1165–1177 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Nickelsen (Ludwig Maximilian University of Munich) for discussions and for providing dU and nac2 mutant strains and for antibodies against D2 and RBP40. We are grateful to S. Ruf and M.A. Schöttler (both from Max Planck Institute of Molecular Plant Physiology) for providing seeds for the atpB start codon mutants. We thank I. Gerlach for technical assistance, M. Tillich for help with microarray design and J. Gremmels for providing a script for data summary (all Max Planck Institute of Molecular Plant Physiology). For discussions on data analysis we thank J.M. Muino (Humboldt University of Berlin) and D. Walther (Max Planck Institute of Molecular Plant Physiology). We thank A. Barkan (University of Oregon) for critical discussions on the manuscript. For critical reading of this manuscript we thank C. Schmitz-Linneweber (Humboldt University of Berlin) and M. Schroda (University of Kaiserslautern). This work was supported by the German Research Foundation grants ZO 302/4-1 and TRR175-A04 to R.Z., and TRR175-A05 and the Forschungsschwerpunkt BioComp to F.W. R.Z. gratefully acknowledges support by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

R.T. wrote the manuscript, conducted experiments and analysed data. R.B., Y.G. and J.A.B.C. conducted experiments and analysed data. V.L.G. performed experiments. D.Z. and T.M. performed statistical analyses. R.Z. and F.W. designed the experiments, analysed data, assembled figures and wrote the article with contribution from all other authors.

Corresponding authors

Correspondence to Reimo Zoschke or Felix Willmund.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–15, Supplementary Table 1 and Supplementary References.

Reporting Summary

Supplementary Data Set 1

Complete dataset from array-based ribosome profiling experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trösch, R., Barahimipour, R., Gao, Y. et al. Commonalities and differences of chloroplast translation in a green alga and land plants. Nature Plants 4, 564–575 (2018). https://doi.org/10.1038/s41477-018-0211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0211-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing