Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon

Abstract

The legacy of pre-Columbian land use in the Amazonian rainforest is one of the most controversial topics in the social1,2,3,4,5,6,7,8,9,10 and natural sciences11,12. Until now, the debate has been limited to discipline-specific studies, based purely on archaeological data8, modern vegetation13, modern ethnographic data3 or a limited integration of archaeological and palaeoecological data12. The lack of integrated studies to connect past land use with modern vegetation has left questions about the legacy of pre-Columbian land use on the modern vegetation composition in the Amazon, unanswered11. Here, we show that persistent anthropogenic landscapes for the past 4,500 years have had an enduring legacy on the hyperdominance of edible plants in modern forests in the eastern Amazon. We found an abrupt enrichment of edible plant species in fossil lake and terrestrial records associated with pre-Columbian occupation. Our results demonstrate that, through closed-canopy forest enrichment, limited clearing for crop cultivation and low-severity fire management, long-term food security was attained despite climate and social changes. Our results suggest that, in the eastern Amazon, the subsistence basis for the development of complex societies began ~4,500 years ago with the adoption of polyculture agroforestry, combining the cultivation of multiple annual crops with the progressive enrichment of edible forest species and the exploitation of aquatic resources. This subsistence strategy intensified with the later development of Amazonian dark earths, enabling the expansion of maize cultivation to the Belterra Plateau, providing a food production system that sustained growing human populations in the eastern Amazon. Furthermore, these millennial-scale polyculture agroforestry systems have an enduring legacy on the hyperdominance of edible plants in modern forests in the eastern Amazon. Together, our data provide a long-term example of past anthropogenic land use that can inform management and conservation efforts in modern Amazonian ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regional study area.
Fig. 2 : Compiled data summary.
Fig. 3: A conceptual landscape drawing of the changing vegetation and disturbance regimes.

Similar content being viewed by others

References

  1. Clement, C. R.et al. The domestication of Amazonia before European conquest. Proc. Biol. Sci. 282, 20150813 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schaan, D. P. Sacred Geographies of Ancient Amazonia: Historical Ecology of Social Complexity (Left Coast Press, Walnut Creek, CA, 2012).

  3. Balee, W. Cultural Forests of the Amazon. A Historical Ecology of People and Their Landscapes (Univ. Alabama Press, Tuscaloosa, AL, 2013).

  4. Roberts, P., Hunt, C., Arroyo-Kalin, M., Evans, D. & Boivin, N. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nat. Plants 3, 17093 (2017).

    Article  PubMed  Google Scholar 

  5. de Souza, J. G. et al. Pre-Columbian earth-builders settled along the entire southern rim of the Amazon. Nat. Commun. 9, 1125 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Iriarte, J. et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl Acad. Sci. USA 109, 6473–6478 (2012).

    Article  PubMed  Google Scholar 

  7. Watling, J. et al. Impact of pre-Columbian ‘geoglyph’ builders on Amazonian forests. Proc. Natl Acad. Sci. USA 114, 1868–1873 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. Heckenberger, M. J. et al. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 1214–1217 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. Roosevelt, A. C. The Amazon and the Anthropocene: 13,000 years of human influence in a tropical rainforest. Anthropocene 4, 69–87 (2013).

    Article  Google Scholar 

  10. Erickson, C. L. in The Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 157–183 (Springer, New York, NY, 2008).

  11. Barlow, J., Gardner, T. A., Lees, A. C., Parry, L. & Peres, C. A. How pristine are tropical forests? An ecological perspective on the pre-Columbian human footprint in Amazonia and implications for contemporary conservation. Biol. Conserv. 151, 45–49 (2012).

    Article  Google Scholar 

  12. McMichael, C. H. et al. Sparse pre-Columbian human habitation in western Amazonia. Science 336, 1429–1431 (2012).

    Article  PubMed  CAS  Google Scholar 

  13. Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).

    Article  PubMed  CAS  Google Scholar 

  14. McMichael, C. H., Feeley, K. J., Dick, C. W., Piperno, D. R. & Bush, M. B. Comment on “Persistent effects of pre-Columbian plant domestication on Amazonian forest composition”. Science 358, eaan8347 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Junqueira, A. B. et al. Response to comment on “Persistent effects of pre-Columbian plant domestication on Amazonian forest composition”. Science 358, eaan8837 (2017).

    Article  PubMed  CAS  Google Scholar 

  16. Mayle, F. E. & Iriarte, J. Integrated palaeoecology and archaeology—a powerful approach for understanding pre-Columbian Amazonia. J. Archaeol. Sci 51, 54–64 (2014).

    Article  Google Scholar 

  17. Carson, J. F. et al. Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proc. Natl Acad. Sci. USA 111, 10497–10502 (2014).

    Article  PubMed  CAS  Google Scholar 

  18. Whitney, B. S., Dickau, R., Mayle, F. E., Soto, J. D. & Iriarte, J. Pre-Columbian landscape impact and agriculture in the Monumental Mound region of the Llanos de Moxos, lowland Bolivia. Quat. Res. 80, 207–217 (2013).

    Article  Google Scholar 

  19. Maezumi, S. Y., Whitney, B. S., Mayle, F. E., Gregorio de Souza, J. & Iriarte, J. Reassessing climate and pre-Columbian drivers of paleofire activity in the Bolivian Amazon. Quat. Int. https://doi.org/10.1016/j.quaint.2017.11.053 (2017).

  20. Willis, K. J., Gillson, L. & Brncic, T. M. How ‘virgin’ is virgin rainforest? Science 304, 402–403 (2004).

  21. Iriarte, J. in Tropical Forest Conservation. Long-Term Processes of Human Evolution, Cultural Adaptations and Consumption Patterns (ed. Sanz, N.) 140–161 (UNESCO, Mexico City, 2017).

  22. ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Heckenberger, M. & Neves, E. G. Amazonian archaeology. Annu. Rev. Anthropol. 38, 251–266 (2009).

    Article  Google Scholar 

  24. Woods, W. I. et al. (eds) Amazonian Dark Earths: Wim Sombroek’s Vision (Springer, Dordrecht, 2009).

  25. Junqueira, A. B., Shepard, G. H. & Clement, C. R. Secondary forests on anthropogenic soils of the middle Madeira River: valuation, local knowledge, and landscape domestication in Brazilian Amazonia. Econ. Bot. 65, 85–99 (2011).

    Article  CAS  Google Scholar 

  26. Lins, J. et al. Pre-Columbian floristic legacies in modern homegardens of central Amazonia. PLoS ONE 10, e0127067 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. de Souza, N. B., Junqueira, A. B., Struik, P. C., Stomph, T. & Clement, C. R. The role of fertile anthropogenic soils in the conservation of native and exotic agrobiodiversity in Amazonian homegardens. Agroforest. Syst. https://doi.org/10.1007/s10457-017-0137-y (2017).

  28. Wang, X. et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541, 204–207 (2017).

    Article  PubMed  CAS  Google Scholar 

  29. Clement, C. R. 1492 and the loss of Amazonian crop genetic resources. II. Crop biogeography at contact. Econ. Bot. 53, 203–216 (1999).

    Article  Google Scholar 

  30. Hanelt, P., Büttner, R. & Mansfeld, R. (eds) Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops (Except Ornamentals) (Springer, Berlin, 2001).

  31. Denevan, W. Cultivated Landscapes of Native Amazonia and the Andes (Oxford Univ. Press, Oxford, 2001).

  32. Chen, Y. et al. Forecasting fire season severity in South America using sea surface temperature anomalies. Science 334, 787–791 (2011).

    Article  PubMed  CAS  Google Scholar 

  33. Heriarte, M. d. Descripção do Estado do Maranhão, Pará, Corupá e Rio das Amazonas (Impresa do Filho de Carlos Gerold, Vienna, 1874).

  34. Bozarth, S., Price, K., Woods, W., Neves, E. & Rebellato, R. in Amazonian Dark Earths: Wim Sombroek’s Vision (eds Woods, W. I. et al.) 85–98 (Springer, Dordrecht, 2009).

  35. Herrera, L. F., Cavelier, I., Rodriguez, C. & Mora, S. The technical transformation of an agricultural system in the Colombian Amazon. World Archaeol. 24, 98–113 (1992).

    Article  Google Scholar 

  36. Schmidt, M. J. & Heckenberger, M. J. in Amazonian Dark Earths: Wim Sombroek’s Vision (eds Woods, W. I. et al.) 163–190 (Springer, Dordrecht, 2009).

  37. Hecht, S. B. in Amazonian Dark Earths: Origin, Properties, Management (eds Lehmann, J. et al.) 355–372 (Springer, Dordrecht, 2003).

  38. Ford, A. & Nigh, R. Origins of the Maya Forest Garden: Maya resource management. J. Ethnobiol. 29, 213–236 (2009).

    Article  Google Scholar 

  39. Levis, C. et al. How people domesticated Amazonian forests. Front. Ecol. Evol. 5, 171 (2018).

    Article  Google Scholar 

  40. Willey, G. R. & Phillips, P. Method and Theory in American Archaeology (Univ. Chicago Press, Chicago, IL, 1958).

  41. Arroyo-Kalin, M. The Amazonian Formative: crop domestication and anthropogenic soils. Diversity 2, 473–504 (2010).

    Article  Google Scholar 

  42. Heckenberger, M. J. in Comparative Arawakan Histories: Rethinking Language Family and Culture Area in Amazonia (eds Hill, J. D. & Santos-Granero, F.) 99–122 (Univ. Illinois Press, Champaign, IL, 2002).

  43. Neves, E. G. El Formativo que nunca terminó: la larga historia de estabilidad en las ocupaciones humanas de la Amazonía central. Boletîn Arqueol. PUCP 11, 117–142 (2007).

    Google Scholar 

  44. Hermenegildo, T., O’Connell, T. C., Guapindaia, V. L. C. & Neves, E. G. New evidence for subsistence strategies of late pre-colonial societies of the mouth of the Amazon based on carbon and nitrogen isotopic data. Quat. Int. 448, 139–149 (2017).

    Article  Google Scholar 

  45. Roosevelt, A. C., Housley, R. A., Da Silveira, M. I., Maranca, S. & Johnson, R. Eighth millennium pottery from a prehistoric shell midden in the Brazilian Amazon. Science 254, 1621–1624 (1991).

    Article  PubMed  CAS  Google Scholar 

  46. Roosevelt, A. C. San Jacinto I: an historical ecological approach to an archaic site in Colombia. Hispanic Am. Hist. Rev. 87, 738–740 (2007).

  47. Roosevelt, A. C. in Complex Polities in the Ancient Tropical World (eds Bacus, E. A. & Lucero, L. J.) 13–33 (American Anthropological Association, Washington DC, 1999).

  48. Nimuendajú, C. Os Tapajó. Bol. Museu Emílio Goeldi 10, 93–106 (1948)

  49. Gomes, D. M. C. Politics and ritual in large villages in Santarém, lower Amazon, Brazil. Camb. Archaeol. J. 27, 275–293 (2017).

    Article  Google Scholar 

  50. Schaan, D. P. in Beyond Waters: Archaeology and Environmental History of the Amazonian Inland (ed. Stenborg, P.) 23–36 (GOTARC, Gothenburg, 2016).

  51. Mendes, A. C., Truckenbrod, W. & Nogueira, A. Faciological analysis of Alter do Chão formation (Cretaceous, Amazon basin), near the town of Óbidos, Pará, Brazil. Rev. Bras. Biocienc. 52, 39–57 (2012).

    Google Scholar 

  52. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  53. Veloso, H. P., Rangel-Filho, A. L. R. & Lima, J. C. A. Classificação da Vegetação Brasileira, Adaptada a um Sistema Universal (IBGE, 1991).

  54. Sugita, S. Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation. J. Ecol. 82, 881–897 (1994).

    Article  Google Scholar 

  55. Piperno, D. R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists (Altamira Press, Lanham, MD, 2005).

  56. Wright, H. E. A square-rod piston sampler for lake sediments. J. Sediment. Res. 37, 975–976 (1967).

    Article  Google Scholar 

  57. Blaauw, M., Christen, J. A., Mauquoy, D., van der Plicht, J. & Bennett, K. D. Testing the timing of radiocarbon-dated events between proxy archives. Holocene 17, 283–288 (2007).

    Article  Google Scholar 

  58. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2014).

  59. Appleby, P. G. in Tracking Environmental Change using Lake Sediments: Basin Analysis, Coring and Chronological Techniques Vol. 1 (eds Last, W. M. & Smol, J. P.) 171–203 (Springer, Dordrech, 2001).

  60. Flynn, W. W. The determination of low levels of polonium-210 in environmental materials. Anal. Chim. Acta 43, 221–227 (1968).

    Article  PubMed  CAS  Google Scholar 

  61. Stuiver, M. & Polach, H. A. Discussion reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  62. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55, 1869–1887 (2013).

    Article  CAS  Google Scholar 

  63. Andrés, C. J. & Pérez, S. E. A new robust statistical model for radiocarbon data. Radiocarbon 51, 1047–1059 (2009).

    Article  Google Scholar 

  64. Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Google Scholar 

  65. Croudace, I. W., Rindby, A. & Rothwell, R. G. ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geol. Soc. Spec. Publ. 267, 51–63 (2006).

    Article  CAS  Google Scholar 

  66. Nowaczyk, N. R. in Tracking Environmental Change using Lake Sediments: Basin Analysis, Coring and Chronological Techniques Vol. 1 (eds Last, W. M. & Smol, J. P.) 155–170 (Springer, Dordrecht, 2001).

  67. Reynolds, R., Belnap, J., Reheis, M., Lamothe, P. & Luiszer, F. Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc. Natl. Acad. Sci. USA 98, 7123–7127 (2001).

    Article  PubMed  CAS  Google Scholar 

  68. Dean, W. E. Jr Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sediment. Res. 44, 242–248 (1974).

    CAS  Google Scholar 

  69. Whitlock, C. & Larsen, C. in Tracking Environmental Change using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators Vol. 3 (eds Smol, J. P. et al.) 75–97 (Springer, Dordrecht, 2001).

  70. Rodionov, S. N. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 31, L09204 (2004).

    Article  Google Scholar 

  71. Rodionov, S. N. A sequential method for detecting regime shifts in the mean and variance. In Large-Scale Disturbances (Regime Shifts) and Recovery in Aquatic Ecosystems: Challenges for Management Toward Sustainability, Proc. 2005 UNESCO-ROSTE/BAS Workshop on Regime Shifts (eds Velikova, V. & Chipev, N.) 68–72 (UNESCO, 2005).

  72. Faegri, K. & Iversen, J. Textbook of Pollen Analysis (John Wiley and Sons, Chichester, 1989).

  73. Whitney, B. S., Rushton, E. A., Carson, J. F., Iriarte, J. & Mayle, F. E. An improved methodology for the recovery of Zea mays and other large crop pollen, with implications for environmental archaeology in the Neotropics. Holocene 22, 1087–1096 (2012).

    Article  Google Scholar 

  74. Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 615–621 (1971).

    Google Scholar 

  75. Holst, I., Moreno, J. E. & Piperno, D. R. Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths. Proc. Natl Acad. Sci. USA 104, 17608–17613 (2007).

    Article  PubMed  Google Scholar 

  76. Burn, M. J. & Mayle, F. E. Palynological differentiation between genera of the Moraceae family and implications for Amazonian palaeoecology. Rev. Palaeobot. Palynol. 149, 187–201 (2008).

    Article  Google Scholar 

  77. Dickau, R. et al. Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions. Rev. Palaeobot. Palynol. 193, 15–37 (2013).

    Article  Google Scholar 

  78. Watling, J. & Iriarte, J. Phytoliths from the coastal savannas of French Guiana. Quat. Int. 287, 162–180 (2013).

    Article  Google Scholar 

  79. Iriarte, J. et al. Late Holocene neotropical agricultural landscapes: phytolith and stable carbon isotope analysis of raised fields from French Guianan coastal savannahs. J. Archaeol. Sci. 37, 2984–2994 (2010).

    Article  Google Scholar 

  80. Piperno, D. R. Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quat. Int. 193, 146–159 (2009).

    Article  Google Scholar 

  81. Iriarte, J. Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimensional morphology of phytoliths in the grasslands of southeastern South America. J. Archaeol. Sci. 30, 1085–1094 (2003).

    Article  Google Scholar 

  82. Pearsall, D. M., Chandler-Ezell, K. & Chandler-Ezell, A. Identifying maize in neotropical sediments and soils using cob phytoliths. J. Archaeol. Sci. 30, 611–627 (2003).

    Article  Google Scholar 

  83. Piperno, D. R., Andres, T. C. & Stothert, K. E. Phytoliths in Cucurbita and other neotropical Cucurbitaceae and their occurrence in early archaeological sites from the lowland American tropics. J. Archaeol. Sci. 27, 193–208 (2000).

    Article  Google Scholar 

  84. Travassos, D. Dark Earth Plant Management in the Lower Tapajós. PhD thesis, Univ. Exeter (2018).

  85. Downey, S. S., Haas, W. R. & Shennan, S. J. European Neolithic societies showed early warning signals of population collapse. Proc. Natl Acad. Sci. USA 113, 9751–9756 (2016).

    Article  PubMed  CAS  Google Scholar 

  86. Goldberg, A., Mychajliw, A. M. & Hadly, E. A. Post-invasion demography of prehistoric humans in South America. Nature 532, 232–235 (2016).

    Article  PubMed  CAS  Google Scholar 

  87. Shenna, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 2486 (2013).

    Article  CAS  Google Scholar 

  88. Timpson, A. et al. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. J. Archaeol. Sci. 52, 549–557 (2014).

    Article  Google Scholar 

  89. Zahid, H. J., Robinson, E. & Kelly, R. L. Agriculture, population growth, and statistical analysis of the radiocarbon record. Proc. Natl Acad. Sci. USA 113, 931–935 (2016).

    Article  PubMed  CAS  Google Scholar 

  90. Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).

    Article  CAS  Google Scholar 

  91. Alves, D. T. Ocupação Indígena na Foz do Rio Tapajós (1610 a.C.–1020 d.C.): Estudo do sítio Porto de Santarém (Novas Edições Acadêmicas, Saarbrücken, 2014).

  92. Quinn, E. R. Excavating “Tapajó” Ceramics at Santarém: their Age and Archaeological Context. PhD thesis, Univ. Illinois at Chicago (2004).

  93. Roosevelt, A. C. The development of prehistoric complex societies: Amazonia, a tropical forest. Archeol. Pap. Am. Anthropol. Assoc. 9, 13–33 (1999).

    Article  Google Scholar 

  94. National Register of Archaeological Sites (IPHAN, 2018).

  95. WinklerPrins, A. M. G. A. & Aldrich, S. P. Locating Amazonian dark earths: creating an interactive GIS of known locations. J. Lat. Am. Geogr. 9, 33–50 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this research was supported by the PAST (Pre-Columbian Amazon-Scale Transformations) European Research Council Consolidator Grant to J.I. (ERC_Cog 616179). Research was conducted under permit 01506.004836/2014-69 from the Instituto do Patrimônio Histórico e Artístico Nacional (IPHAN) and ICMBio permit 106/14-FNT. We thank all residents of the Maguarí and Jamaraquá community for their hospitality and help.

Author information

Authors and Affiliations

Authors

Contributions

J.I., S.Y.M. and D.S. designed the research. S.Y.M., J.I., D.A. and M.R. carried out the palaeoecological and archaeological fieldwork. E.A.d.O. carried out the botanical inventories. S.Y.M. carried out the pollen, charcoal, geochemistry and magnetic susceptibility analyses. D.A. carried out the analysis of the archaeological data. R.L.B. built the age-model chronology. J.G.d.S. compiled and analysed the archaeological radiocarbon dates. C.L. carried out the analysis of the modern vegetation and compiled the list of edible plants. S.Y.M. and J.I. led the writing of the paper with inputs from all other authors.

Corresponding author

Correspondence to S. Yoshi Maezumi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–10, Supplementary Discussion, Supplementary Figures and Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maezumi, S.Y., Alves, D., Robinson, M. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nature Plants 4, 540–547 (2018). https://doi.org/10.1038/s41477-018-0205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0205-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing