Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Three-dimensional chromatin packing and positioning of plant genomes

Abstract

Information and function of a genome are not only decorated with epigenetic marks in the linear DNA sequence but also in their non-random spatial organization in the nucleus. Recent research has revealed that three-dimensional (3D) chromatin organization is highly correlated with the functionality of the genome, contributing to many cellular processes. Driven by the improvements in chromatin conformation capture methods and visualization techniques, the past decade has been an exciting period for the study of plants’ 3D genome structures, and our knowledge in this area has been substantially advanced. This Review describes our current understanding of plant chromatin organization and positioning beyond the nucleosomal level, and discusses future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of hierarchical chromatin organisation in plants.
Fig. 2: Comparison of Arabidopsis and rice chromatin organization at chromosomal level.

Similar content being viewed by others

References

  1. Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin Domains: the unit of chromosome organization. Mol. Cell 62, 668–680 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Probst, A. V. & Mittelsten Scheid, O. Stress-induced structural changes in plant chromatin. Curr. Opin. Plant Biol. 27, 8–16 (2015).

    Article  PubMed  CAS  Google Scholar 

  3. Rosa, S. et al. Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization. Genes Dev. 27, 1845–1850 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Paweletz, N. Walther Flemming: pioneer of mitosis research. Nat. Rev. Mol. Cell Biol. 2, 72–75 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. Flemming, W. Zellsubstanz, kern und zelltheilung. (Vogel, Leipzig, 1882).

  6. Sexton, T. & Cavalli, G. The role of chromosome domains in shaping the functional genome. Cell 160, 1049–1059 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. Grob, S. & Grossniklaus, U. Chromosome conformation capture-based studies reveal novel features of plant nuclear architecture. Curr. Opin. Plant Biol. 36, 149–157 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. Liu, C. & Weigel, D. Chromatin in 3D: progress and prospects for plants. Genome Biol. 16, 170 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Dostie, J. et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Simonis, M., Kooren, J. & de Laat, W. An evaluation of 3C-based methods to capture DNA interactions. Nat. Methods 4, 895–901 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Grob, S. & Cavalli, G. Technical review: a hitchhiker’s guide to chromosome conformation capture. Methods Mol. Biol. 1675, 233–246 (2018).

    Article  PubMed  CAS  Google Scholar 

  15. Sotelo-Silveira, M., Chávez Montes, R. A., Sotelo-Silveira, J. R., Marsch-Martínez, N. & de Folter, S. Entering the next dimension: plant penomes in 3D. Trends Plant Sci. http://doi.org/cqwt (2018).

  16. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Li, G. et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. 11, R22 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. Jäger, R. et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat. Commun. 6, 6178 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Li, G. et al. Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genom. 15, S11 (2014).

    Article  Google Scholar 

  21. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).

    Article  PubMed  CAS  Google Scholar 

  24. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Giorgetti, L. & Heard, E. Closing the loop: 3C versus DNA FISH. Genome Biol. 17, 215 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fudenberg, G. & Imakaev, M. FISH-ing for captured contacts: towards reconciling FISH and 3C. Nat. Methods 14, 673–678 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Williamson, I. et al. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 28, 2778–2791 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cui, C., Shu, W. & Li, P. Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front. Cell Dev. Biol. 4, 89 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Solovei, I. et al. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp. Cell Res. 276, 10–23 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. Cremer, M. et al. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol. Biol. 463, 205–239 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Beliveau, B. J. et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6, 7147 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. Ni, Y. et al. Super-resolution imaging of a 2.5 kb non-repetitive DNA in situ in the nuclear genome using molecular beacon probes. eLife 6, e21660 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Qin, P. et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR–Cas9. Nat. Commun. 8, 14725 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ye, H., Rong, Z. & Lin, Y. Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell 8, 853–855 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ma, Y. et al. Live cell imaging of single genomic loci with quantum dot-labeled TALEs. Nat. Commun. 8, 15318 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hong, Y., Lu, G., Duan, J., Liu, W. & Zhang, Y. Comparison and optimization of CRISPR/dCas9/gRNA genome-labeling systems for live cell imaging. Genome Biol. 19, 39 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192 (2013).

    Article  PubMed  CAS  Google Scholar 

  44. Yu, M. & Ren, B. The three-dimensional organization of mammalian genomes. Annu. Rev. Cell Dev. Biol. 33, 265–289 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pecinka, A. et al. Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113, 258–269 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. Fransz, P., De Jong, J. H., Lysak, M., Castiglione, M. R. & Schubert, I. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc. Natl Acad. Sci. USA 99, 14584–14589 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Tiang, C.-L., He, Y. & Pawlowski, W. P. Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants. Plant Physiol. 158, 26–34 (2012).

    Article  PubMed  CAS  Google Scholar 

  48. Rodriguez-Granados, N. Y. et al. Put your 3D glasses on: plant chromatin is on show. J. Exp. Bot. 67, 3205–3221 (2016).

    Article  PubMed  CAS  Google Scholar 

  49. Dong, F. & Jiang, J. Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res. 6, 551–558 (1998).

    Article  PubMed  CAS  Google Scholar 

  50. Prieto, P., Santos, A. P., Moore, G. & Shaw, P. Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice (Oryza sativa). Chromosoma 112, 300–307 (2004).

    Article  PubMed  Google Scholar 

  51. Liu, C., Cheng, Y.-J., Wang, J.-W. & Weigel, D. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat. Plants 3, 742–748 (2017).

    Article  PubMed  CAS  Google Scholar 

  52. Bass, H. W. et al. Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase. J. Cell Sci. 113, 1033–1042 (2000).

    PubMed  CAS  Google Scholar 

  53. Schwarzacher, T. Three stages of meiotic homologous chromosome pairing in wheat: cognition, alignment and synapsis. Sex. Plant Reprod. 10, 324–331 (1997).

    Article  CAS  Google Scholar 

  54. Zhang, F. et al. The F-box protein ZYGO1 mediates Bouquet formation to promote homologous pairing, synapsis, and recombination in rice meiosis. Plant Cell 29, 2597–2609 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bourbousse, C. et al. Light signaling controls nuclear architecture reorganization during seedling establishment. Proc. Natl Acad. Sci. USA 112, 2836–2844 (2015).

    Article  CAS  Google Scholar 

  56. Pecinka, A. et al. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22, 3118–3129 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wang, L.-C., Wu, J.-R., Hsu, Y.-J. & Wu, S.-J. Arabidopsis HIT4, a regulator involved in heat-triggered reorganization of chromatin and release of transcriptional gene silencing, relocates from chromocenters to the nucleolus in response to heat stress. New Phytol. 205, 544–554 (2015).

    Article  PubMed  CAS  Google Scholar 

  58. Dong, P. et al. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10, 1497–1509 (2017).

    Article  PubMed  CAS  Google Scholar 

  59. Grob, S., Schmid, M. W. & Grossniklaus, U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55, 678–693 (2014).

    Article  PubMed  CAS  Google Scholar 

  60. Wang, J. et al. Genome-wide analysis of the distinct types of chromatin interactions in Arabidopsis thaliana. Plant Cell Physiol. 58, 57–70 (2017).

    PubMed  CAS  Google Scholar 

  61. Wang, M. et al. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat. Plants 4, 90–97 (2018).

    Article  PubMed  CAS  Google Scholar 

  62. Grob, S., Schmid, M. W., Luedtke, N. W., Wicker, T. & Grossniklaus, U. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biol. 14, R129 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Concia, L. et al. Genome-wide analysis of the Arabidopsis thaliana replication timing program. Plant Physiol. 176, 2166–2185 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Feng, S. et al. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55, 694–707 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhu, W. et al. Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol. 18, 157 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Szabo, Q. et al. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci. Adv. 4, eaar8082 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  PubMed  CAS  Google Scholar 

  71. Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mizuguchi, T. et al. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516, 432–435 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Le, T. B. K., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342, 731–734 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169, 216–228 (2017).

    Article  PubMed  CAS  Google Scholar 

  77. Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948–953 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zuin, J. et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl Acad. Sci. USA 111, 996–1001 (2014).

    Article  PubMed  CAS  Google Scholar 

  81. Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32, 3119–3129 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

    Article  PubMed  CAS  Google Scholar 

  83. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  PubMed  CAS  Google Scholar 

  84. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, 6456–6465 (2015).

    Article  CAS  Google Scholar 

  86. Terakawa, T. et al. The condensin complex is a mechanochemical motor that translocates along DNA. Science 358, 672–676 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Rowley, M. J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell 67, 837–852 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Isoda, T. et al. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell 171, 103–119 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Benedetti, F., Racko, D., Dorier, J., Burnier, Y. & Stasiak, A. Transcription-induced supercoiling explains formation of self-interacting chromatin domains in S. pombe. Nucleic Acids Res. 45, 9850–9859 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Moissiard, G. et al. MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336, 1448–1451 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wang, C. et al. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res. 25, 246–256 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E. & Wiehe, T. The chromatin insulator CTCF and the emergence of metazoan diversity. Proc. Natl Acad. Sci. USA 109, 17507–17512 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ulianov, S. V. et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res. 26, 70–84 (2015).

    Article  PubMed  Google Scholar 

  102. Wang, M. et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat. Genet. 49, 579–587 (2017).

    Article  PubMed  CAS  Google Scholar 

  103. Dong, Q. et al. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J. 94, 1141–1156 (2018).

    Article  PubMed  CAS  Google Scholar 

  104. Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297–1309 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Liu, C. et al. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res. 26, 1057–1068 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hsieh, T.-H. S. et al. Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162, 108–119 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Xu, W. et al. The R-loop is a common chromatin feature of the Arabidopsis genome. Nat. Plants 3, 704–714 (2017).

    Article  PubMed  CAS  Google Scholar 

  108. Conn, V. M. et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat. Plants 3, 17053 (2017).

    Article  PubMed  CAS  Google Scholar 

  109. Fransz, P. & de Jong, H. From nucleosome to chromosome: a dynamic organization of genetic information: Dynamic organization of genetic information. Plant J. 66, 4–17 (2011).

    Article  PubMed  CAS  Google Scholar 

  110. Weber, C. M. & Henikoff, S. Histone variants: dynamic punctuation in transcription. Genes Dev. 28, 672–682 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Vergara, Z. & Gutierrez, C. Emerging roles of chromatin in the maintenance of genome organization and function in plants. Genome Biol. 18, 96 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. van Steensel, B. & Belmont, A. S. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780–791 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Nguyen, H. Q. & Bosco, G. Gene positioning effects on expression in eukaryotes. Annu. Rev. Genet. 49, 627–646 (2015).

    Article  PubMed  CAS  Google Scholar 

  115. Groves, N. R., Biel, A. M., Newman-Griffis, A. H. & Meier, I. Dynamic changes in plant nuclear organization in response to environmental and developmental signals. Plant Physiol. 176, 230–241 (2018).

    Article  PubMed  CAS  Google Scholar 

  116. Németh, A. & Längst, G. Genome organization in and around the nucleolus. Trends Genet. 27, 149–156 (2011).

    Article  PubMed  CAS  Google Scholar 

  117. Durut, N. et al. A duplicated NUCLEOLIN gene with antagonistic activity is required for chromatin organization of silent 45S rDNA in Arabidopsis. Plant Cell 26, 1330–1344 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Pontvianne, F. et al. Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes Dev. 27, 1545–1550 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Pontvianne, F. et al. Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome. Cell Rep. 16, 1574–1587 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Armstrong, S. J., Franklin, F. C. & Jones, G. H. Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J. Cell Sci. 114, 4207–4217 (2001).

    PubMed  CAS  Google Scholar 

  121. Németh, A. et al. Initial genomics of the human nucleolus. PLoS Genet. 6, e1000889 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. van Koningsbruggen, S. et al. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell 21, 3735–3748 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Montacié, C. et al. Nucleolar proteome analysis and proteasomal activity assays reveal a link between nucleolus and 26S proteasome in A. thaliana. Front. Plant Sci. 8, 1815 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Pendle, A. F. et al. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol. Biol. Cell 16, 260–269 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Harr, J. C., Gonzalez-Sandoval, A. & Gasser, S. M. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep. 17, 139–155 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Ciska, M. & Moreno Díaz de la Espina, S. The intriguing plant nuclear lamina. Front. Plant Sci. 5, 166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhou, X., Graumann, K. & Meier, I. The plant nuclear envelope as a multifunctional platform LINCed by SUN and KASH. J. Exp. Bot. 66, 1649–1659 (2015).

    Article  PubMed  CAS  Google Scholar 

  128. Meier, I., Richards, E. J. & Evans, D. E. Cell biology of the plant nucleus. Annu. Rev. Plant Biol. 68, 139–172 (2017).

    Article  PubMed  CAS  Google Scholar 

  129. Goto, C., Tamura, K., Fukao, Y., Shimada, T. & Hara-Nishimura, I. The novel nuclear envelope protein KAKU4 modulates nuclear morphology in Arabidopsis. Plant Cell 26, 2143–2155 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Pawar, V. et al. A novel family of plant nuclear envelope-associated proteins. J. Exp. Bot. 67, 5699–5710 (2016).

    Article  PubMed  CAS  Google Scholar 

  131. Ibarra, A. & Hetzer, M. W. Nuclear pore proteins and the control of genome functions. Genes Dev. 29, 337–349 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Strambio-De-Castillia, C., Niepel, M. & Rout, M. P. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11, 490–501 (2010).

    Article  PubMed  CAS  Google Scholar 

  133. Parry, G. The plant nuclear envelope and regulation of gene expression. J. Exp. Bot. 66, 1673–1685 (2015).

    Article  PubMed  CAS  Google Scholar 

  134. Yang, Y., Wang, W., Chu, Z., Zhu, J.-K. & Zhang, H. Roles of nuclear pores and nucleo-cytoplasmic trafficking in plant stress responses. Front. Plant Sci. 8, 574 (2017).

    PubMed  PubMed Central  Google Scholar 

  135. Smith, S. et al. Marker gene tethering by nucleoporins affects gene expression in plants. Nucleus 6, 471–478 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Zhu, Y. et al. An Arabidopsis nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genet. 13, e1007124 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Fang, Y. & Spector, D. L. Centromere positioning and dynamics in living Arabidopsis plants. Mol. Biol. Cell 16, 5710–5718 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Bi, X. et al. Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery. Genome Res. 27, 1162–1173 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Tessadori, F. et al. Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J. Cell Sci. 120, 1200–1208 (2007).

    Article  PubMed  CAS  Google Scholar 

  140. van Zanten, M. et al. Photoreceptors CRYTOCHROME2 and phytochrome B control chromatin compaction in Arabidopsis. Plant Physiol. 154, 1686–1696 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Soppe, W. J. J. et al. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J. 21, 6549–6559 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Towbin, B. D. et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150, 934–947 (2012).

    Article  PubMed  CAS  Google Scholar 

  143. Bian, Q., Khanna, N., Alvikas, J. & Belmont, A. S. β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. J. Cell Biol. 203, 767–783 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Gonzalez-Sandoval, A. et al. Perinuclear anchoring of H3K9-methylated chromatin stabilizes induced cell fate in C. elegans embryos. Cell 163, 1333–1347 (2015).

    Article  PubMed  CAS  Google Scholar 

  145. Harr, J. C. et al. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J. Cell Biol. 208, 33–52 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Solovei, I. et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584–598 (2013).

    Article  PubMed  CAS  Google Scholar 

  147. Wang, H., Dittmer, T. A. & Richards, E. J. Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biol. 13, 200 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Poulet, A. et al. The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. J. Cell Sci. 130, 590–601 (2017).

    Article  PubMed  CAS  Google Scholar 

  149. Dittmer, T. A., Stacey, N. J., Sugimoto-Shirasu, K. & Richards, E. J. LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19, 2793–2803 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Sakamoto, Y. & Takagi, S. LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana. Plant Cell Physiol. 54, 622–633 (2013).

    Article  PubMed  CAS  Google Scholar 

  151. Feng, C.-M., Qiu, Y., Van Buskirk, E. K., Yang, E. J. & Chen, M. Light-regulated gene repositioning in Arabidopsis. Nat. Commun. 5, 3027 (2014).

    Article  PubMed  CAS  Google Scholar 

  152. Oka, R. et al. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol. 18, 137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Veluchamy, A. et al. LHP1 Regulates H3K27me3 spreading and shapes the three-dimensional conformation of the Arabidopsis genome. PLoS ONE 11, e0158936 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Chica, C., Louis, A., Roest Crollius, H., Colot, V. & Roudier, F. Comparative epigenomics in the Brassicaceae reveals two evolutionarily conserved modes of PRC2-mediated gene regulation. Genome Biol. 18, 207 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Xiong, J., Zhang, Z. & Zhu, B. Polycomb `polypacks' the chromatin. Proc. Natl Acad. Sci. USA 113, 14878–14880 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  157. Hall, L. L. & Lawrence, J. B. RNA as a fundamental component of interphase chromosomes: could repeats prove key? Curr. Opin. Genet. Dev. 37, 137–147 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Marchese, F. P., Raimondi, I. & Huarte, M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 18, 206 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Benoit, M., Layat, E., Tourmente, S. & Probst, A. V. Heterochromatin dynamics during developmental transitions in Arabidopsis - a focus on ribosomal DNA loci. Gene 526, 39–45 (2013).

    Article  PubMed  CAS  Google Scholar 

  160. Melé, M. & Rinn, J. L. ‘Cat’s Cradling’ the 3D genome by the act of lncRNA transcription. Mol. Cell 62, 657–664 (2016).

    Article  PubMed  CAS  Google Scholar 

  161. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article  Google Scholar 

  162. Wu, J. et al. Physical maps and recombination frequency of six rice chromosomes. Plant J. 36, 720–730 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 757600). We apologize to our colleagues whose work was not included or discussed sufficiently in this manuscript due to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

E.D. and C.L. wrote the manuscript.

Corresponding author

Correspondence to Chang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figure 1 and Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, E.S., Liu, C. Three-dimensional chromatin packing and positioning of plant genomes. Nature Plants 4, 521–529 (2018). https://doi.org/10.1038/s41477-018-0199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0199-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research