Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of the BUB3 protein in phragmoplast microtubule reorganization during cytokinesis

A Publisher Correction to this article was published on 07 August 2018

This article has been updated

Abstract

The evolutionarily conserved WD40 protein budding uninhibited by benzimidazole 3 (BUB3) is known for its function in spindle assembly checkpoint control. In the model plant Arabidopsis thaliana, nearly identical BUB3;1 and BUB3;2 proteins decorated the phragmoplast midline through interaction with the microtubule-associated protein MAP65-3 during cytokinesis. BUB3;1 and BUB3;2 interacted with the carboxy-terminal segment of MAP65-3 (but not MAP65-1), which harbours its microtubule-binding domain for its post-mitotic localization. Reciprocally, BUB3;1 and BUB3;2 also regulated MAP65-3 localization in the phragmoplast by enhancing its microtubule association. In the bub3;1bub3;2 double mutant, MAP65-3 localization was often dissipated away from the phragmoplast midline and abolished upon treatment of low doses of the cytokinesis inhibitory drug caffeine that were tolerated by the control plant. The phragmoplast microtubule array exhibited uncoordinated expansion pattern in the double mutant cells as the phragmoplast edge reached the parental plasma membrane at different times in different areas. Upon caffeine treatment, phragmoplast expansion was halted as if the microtubule array was frozen. As a result, cytokinesis was abolished due to failed cell plate assembly. Our findings have uncovered a novel function of the plant BUB3 in MAP65-3-dependent microtubule reorganization during cytokinesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BUB3;1 colocalizes with MAP65-3 in the phragmoplast midline.
Fig. 2: BUB3;1 interacts with MAP65-3 for its phragmoplast localization.
Fig. 3: BUB3;1 and BUB3;2 are functionally redundant.
Fig. 4: BUB3 proteins regulate MAP65-3 localization.
Fig. 5: Caffeine abolishes MAP65-3 localization in the bub3 mutant.
Fig. 6: BUB3 plays a role in phragmoplast microtubule reorganization.

Similar content being viewed by others

Change history

  • 07 August 2018

    In the version of this Article originally published, the affiliation for author Yuh-Ru Julie Lee was incorrect; the correct affiliation is ‘2Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA’. This has now been amended in all versions of the Article.

References

  1. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Musacchio, A. The molecular biology of spindle assembly checkpoint signaling dynamics. Curr. Biol. 25, R1002–R1018 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell 66, 519–531 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Babu, J. R. et al. Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J. Cell Biol. 160, 341–353 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Komaki, S. & Schnittger, A. The spindle assembly checkpoint in Arabidopsis is rapidly shut off during severe stress. Dev. Cell 43, 172–185.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Lermontova, I., Fuchs, J. & Schubert, I. The Arabidopsis checkpoint protein Bub3.1 is essential for gametophyte development. Front Biosci. 13, 5202–5211 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Van Leene, J. et al. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol. Syst. Biol. 6, 397 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Smertenko, A. P. et al. The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20, 3346–3358 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Müller, S. et al. The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr. Biol. 14, 412–417 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ho, C. M. et al. Interaction of antiparallel microtubules in the phragmoplast is mediated by the microtubule-associated protein MAP65-3 in Arabidopsis. Plant Cell 23, 2909–2923 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ho, C. M., Lee, Y. R., Kiyama, L. D., Dinesh-Kumar, S. P. & Liu, B. Arabidopsis microtubule-associated protein MAP65-3 cross-links antiparallel microtubules toward their plus ends in the phragmoplast via its distinct C-terminal microtubule binding domain. Plant Cell 24, 2071–2085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smertenko, A. P. et al. The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16, 2035–2047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, Y. J. et al. The mitotic function of augmin is dependent on its microtubule-associated protein subunit EDE1 in Arabidopsis thaliana. Curr. Biol. 27, 3891–3897.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Hepler, P. K. & Bonsignore, C. L. Caffeine inhibition of cytokinesis—ultrastructure of cell plate formation degradation. Protoplasma 157, 182–192 (1990).

    Article  CAS  Google Scholar 

  15. Kang, B. H., Busse, J. S. & Bednarek, S. Y. Members of the Arabidopsis dynamin-like gene family, ADL1, are essential for plant cytokinesis and polarized cell growth. Plant Cell 15, 899–913 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smertenko, A. et al. Plant cytokinesis: terminology for structures and processes. Trends Cell Biol. 27, 885–894 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Eleftheriou, E. P., Baskin, T. I. & Hepler, P. K. Aberrant cell plate formation in the Arabidopsis thaliana microtubule organization 1 mutant. Plant Cell Physiol. 46, 671–675 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Steiner, A. et al. The membrane-associated Sec1/Munc18 KEULE is required for phragmoplast microtubule reorganization during cytokinesis in Arabidopsis. Mol. Plant 9, 528–540 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Steiner, A. et al. Cell cycle-regulated PLEIADE/AtMAP65-3 links membrane and microtubule dynamics during plant cytokinesis. Plant J. 88, 531–541 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Waizenegger, I. et al. The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Curr. Biol. 10, 1371–1374 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, Y. R. & Liu, B. The rise and fall of the phragmoplast microtubule array. Curr. Opin. Plant Biol. 16, 757–763 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. London, N. & Biggins, S. Signalling dynamics in the spindle checkpoint response. Nat. Rev. Mol. Cell Biol. 15, 736–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding, D., Muthuswamy, S. & Meier, I. Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA. Plant Mol. Biol. 79, 203–216 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Komaki, S. & Schnittger, A. The spindle checkpoint in plants—a green variation over a conserved theme? Curr. Opin. Plant Biol. 34, 84–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Van Damme, D. et al. Arabidopsis α Aurora kinases function in formative cell division plane orientation. Plant Cell 23, 4013–4024 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Efimov, V. P. & Morris, N. R. A screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis. Genetics 149, 101–116 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bao, Z., Zhang, N. & Hua, J. Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1. Nat. Commun. 5, 5628 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Kevei, Z. et al. Conserved CDC20 cell cycle functions are carried out by two of the five isoforms in Arabidopsis thaliana. PLoS ONE 6, e20618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tange, Y. & Niwa, O. Schizosaccharomyces pombe Bub3 is dispensable for mitotic arrest following perturbed spindle formation. Genetics 179, 785–792 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caillaud, M. C. et al. Spindle assembly checkpoint protein dynamics reveal conserved and unsuspected roles in plant cell division. PLoS ONE 4, e6757 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yu, H. G., Muszynski, M. G. & Kelly Dawe, R. The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J. Cell Biol. 145, 425–435 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu, C. K., Ozlu, N., Coughlin, M., Steen, J. J. & Mitchison, T. J. Plk1 negatively regulates PRC1 to prevent premature midzone formation before cytokinesis. Mol. Biol. Cell 23, 2702–2711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smertenko, A. P. et al. Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J. Cell Sci. 119, 3227–3237 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Sasabe, M. & Machida, Y. Regulation of organization and function of microtubules by the mitogen-activated protein kinase cascade during plant cytokinesis. Cytoskeleton (Hoboken) 69, 913–918 (2012).

    Article  CAS  Google Scholar 

  35. Nishihama, R. et al. Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109, 87–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Kosetsu, K. et al. The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22, 3778–3790 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murata, T. et al. Mechanism of microtubule array expansion in the cytokinetic phragmoplast. Nat. Commun. 4, 1967 (2013).

    Article  PubMed  Google Scholar 

  38. Li, H. et al. Arabidopsis MAP65-4 plays a role in phragmoplast microtubule organization and marks the cortical cell division site. New Phytol. 215, 187–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Ravikumar, R., Steiner, A. & Assaad, F. F. Multisubunit tethering complexes in higher plants. Curr. Opin. Plant Biol. 40, 97–105 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Sasabe, M., Kosetsu, K., Hidaka, M., Murase, A. & Machida, Y. Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal. Behav. 6, 743–747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kong, Z., Hotta, T., Lee, Y. R., Horio, T. & Liu, B. The γ-tubulin complex protein GCP4 is required for organizing functional microtubule arrays in Arabidopsis thaliana. Plant Cell 22, 191–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakamura, S. et al. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Biosci. Biotechnol. Biochem. 74, 1315–1319 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Nakagawa, T. et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 104, 34–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, Y. R. J. & Liu, B. Identification of a phragmoplast-associated kinesin-related protein in higher plants. Curr. Biol. 10, 797–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Edelstein, A., Amodaj, N., Hoover, K. & Vale, R. Computer control of microscopes using µManager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).

    Google Scholar 

  46. Edelstein, A. D. et al. Advanced methods of microscope control using µManager software. J. Biol. Methods 1, e10 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Liu laboratory for critical comments on the work. Special thanks go to S. P. Dinesh-Kumar for the BiFC vectors and T. Nakagawa at Shimane University in Japan for the pGWB plasmids, and S. Bednarek for the DRP1A antibody. This work was supported by the US National Science Foundation under the grant MCB-1412509 to B.L. and Y.-R.J.L. H.Z. was supported by a fellowship from the China Scholarship Council (no. 201406305055), the Fundamental Research Funds for the Central Universities (no. 2452018155) and the 111 Project from the Ministry of Education of China (no. B07049). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agency.

Author information

Authors and Affiliations

Authors

Contributions

Y.-R.J.L. and B.L. conceived the project and designed the experiments. H.Z., X.D., B.S., S.L.V. and Y.-R.J.L. performed the experiments. H.Z., X.D., Z.K., H.L., Y.-R.J.L. and B.L. analysed the data and interpreted the results. Y.-R.J.L. and B.L. wrote the manuscript with inputs from other authors.

Corresponding authors

Correspondence to Yuh-Ru Julie Lee or Bo Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, and Supplementary Figures 1 and 2

Reporting Summary

Supplementary Video 1

BUB3;1-GFP localization during mitotic cell division in A. thaliana. This experiment was repeated independently five times with similar results.

Supplementary Video 2

MT reorganization during mitotic cell division in a control cell (left) and a bub3;1 bub3;2 double mutant cell (right) in A. thaliana under undisturbed conditions. This experiment was repeated independently three times with similar results.

Supplementary Video 3

MT reorganization during mitotic cell division in a control cell in A. thaliana after being exposed to 1 mM caffeine this experiment was repeated independently three times with similar results.

Supplementary Video 4

MT reorganization during mitotic cell division in a bub3;1 bub3;2 double mutant cell in A. thaliana after being exposed to 1 mM caffeine. This experiment was repeated independently three times with similar results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Deng, X., Sun, B. et al. Role of the BUB3 protein in phragmoplast microtubule reorganization during cytokinesis. Nature Plants 4, 485–494 (2018). https://doi.org/10.1038/s41477-018-0192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0192-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing