Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations

Abstract

Plant pathogens cause significant losses to agricultural yields and increasingly threaten food security1, ecosystem integrity and societies in general2,3,4,5. Xylella fastidiosa is one of the most dangerous plant bacteria worldwide, causing several diseases with profound impacts on agriculture and the environment6. Primarily occurring in the Americas, its recent discovery in Asia and Europe demonstrates that X. fastidiosa’s geographic range has broadened considerably, positioning it as a reemerging global threat that has caused socioeconomic and cultural damage7,8. X. fastidiosa can infect more than 350 plant species worldwide9, and early detection is critical for its eradication8. In this article, we show that changes in plant functional traits retrieved from airborne imaging spectroscopy and thermography can reveal X. fastidiosa infection in olive trees before symptoms are visible. We obtained accuracies of disease detection, confirmed by quantitative polymerase chain reaction, exceeding 80% when high-resolution fluorescence quantified by three-dimensional simulations and thermal stress indicators were coupled with photosynthetic traits sensitive to rapid pigment dynamics and degradation. Moreover, we found that the visually asymptomatic trees originally scored as affected by spectral plant-trait alterations, developed X. fastidiosa symptoms at almost double the rate of the asymptomatic trees classified as not affected by remote sensing. We demonstrate that spectral plant-trait alterations caused by X. fastidiosa infection are detectable previsually at the landscape scale, a critical requirement to help eradicate some of the most devastating plant diseases worldwide.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Imagery acquisition and plant-trait fluorescence retrievals.
Fig. 2: Contribution of remote sensing plant traits to previsual X. fastidiosa (Xf) symptom detection.
Fig. 3: Relationships between remote-sensed functional plant traits and X. fastidiosa (Xf) disease severity levels at leaf and canopy levels.
Fig. 4: Remote sensing model performance and revisit analysis results.
Fig. 5: Field evaluation, qPCR tests and remote sensing spatial predictions.

References

  1. 1.

    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl Acad. Sci. USA 113, 7575–7579 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Boyd, L. A., Ridout, C., O’Sullivan, D. M., Leach, J. E. & Leung, H. Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet. 29, 233–240 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Flood, J. The importance of plant health to food security. Food Secur. 2, 215–231 (2010).

    Article  Google Scholar 

  5. 5.

    Strange, R. N. & Scott, P. R. Plant disease: A threat to global food security. Annu. Rev. Phytopathol. 43, 83–116 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    Purcell, A. H. Xylella fastidiosa, a regional problem or a global threat? J. Plant Pathol. 79, 99–105 (1997).

    Google Scholar 

  7. 7.

    Stokstad, E. Italy’s olives under siege. Science 348, 620–620 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Almeida, R. P. P. Can Apulia’s olive trees be saved? Science 353, 346–348 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    European Food Safety Authority & European Center for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 14, e04634 (2016).

  10. 10.

    Hopkins, D. L. & Purcell, A. H. Xylella fastidiosa: Cause of Pierce’s disease of grapevine and other emergent diseases. Plant Dis. 86, 1056–1066 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    Xylella fastidiosa World distribution. EPPO Global Database. (Accessed 5 March 2018); https://gd.eppo.int/taxon/XYLEFA/distribution

  12. 12.

    Saponari, M. et al. Pilot project on Xylella fastidiosa to reduce risk assessment uncertainties. EFSA Support. Publ. 13, 1013E (2016).

    Google Scholar 

  13. 13.

    Calderón, R., Navas-Cortés, J. A., Lucena, C. & Zarco-Tejada, P. J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 139, 231–245 (2013).

    Article  Google Scholar 

  14. 14.

    Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Harper, S. J., Ward, L. I. & Clover, G. R. G. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 100, 1282–1288 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    Gamon, J. A., Peñuelas, J. & Field, C. B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41, 35–44 (1992).

    Article  Google Scholar 

  17. 17.

    Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S. & Davison, A. W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 32, 85–100 (1992).

    CAS  Article  Google Scholar 

  18. 18.

    Peñuelas, J., Filella, I., LLoret, P., Muñoz, F. & Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sen. 16, 2727–2733 (1995).

    Article  Google Scholar 

  19. 19.

    Lev-Yadun, S. & Gould, K. S. in Anthocyanins (eds Gould, K., Davies, K. M. & Winefield, C.) Ch. 2 (Springer, New York, NY, 2008).

  20. 20.

    De La Fuente, L., Parker, J. K., Oliver, J. E., Granger, S., Brannen, P. M., van Santen, E. et al. The bacterial pathogen Xylella fastidiosa affects the leaf Ionome of plant hosts during infection. PLoS ONE 8, e62945 (2013).

    Article  Google Scholar 

  21. 21.

    Zeng, W., Melotto, M. & He, S. Y. Plant stomata: A checkpoint of host immunity and pathogen virulence. Curr. Opin. Biotechnol. 21, 599–603 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Berger, S., Sinha, A. K. & Roitsch, T. Plant physiology meets phytopathology: Plant primary metabolism and plant-pathogen interactions. J. Exp. Bot. 58, 4019–4026 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    Tung, J., Goodwin, P. H. & Hsiang, T. Chlorophyll fluorescence for quantification of fungal foliar infection and assessment of the effectiveness of an induced systemic resistance activator. Eur. J. Plant Pathol. 136, 301–315 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Chaerle, L., Hagenbeek, D., De Bruyne, E., Valcke, R. & Van Der Straeten, D. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol. 45, 887–896 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    Barón, M., Pineda, M. & Pérez-Bueno, M. L. Picturing pathogen infection in plants. Z. Naturforsch. C. 71, 355–368 (2016).

    Article  Google Scholar 

  26. 26.

    Giampetruzzi, A. et al. Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca. BMC Genom. 17, 475 (2016).

    Article  Google Scholar 

  27. 27.

    Gueymard, C. SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment (Florida Solar Energy Center, Cocoa, FL, 1995).

    Google Scholar 

  28. 28.

    Gueymard, C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 71, 325–346 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    Calderón, R., Navas-Cortés, J. A. & Zarco-Tejada, P. J. Early detection and quantification of verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sens. 7, 5584–5610 (2015).

    Article  Google Scholar 

  30. 30.

    Niblack, W. An Introduction to Digital Image Processing (Prentice-Hall, Upper Saddle River, NJ, 1986).

  31. 31.

    Sauvola, J. & Pietikäinen, M. Adaptive document image binarization. Pattern Recognit. 33, 225–236 (2000).

    Article  Google Scholar 

  32. 32.

    Hartig, S. M. in Current Protocols in Molecular Biology, Ch. 14 (John Wiley & Sons, Inc., Hoboken, NJ, 2001).

  33. 33.

    Féret, J.-B., Gitelson, A. A., Noble, S. D. & Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 193, 204–215 (2017).

    Article  Google Scholar 

  34. 34.

    Verhoef, W., Jia, L., Xiao, Q. & Su, Z. Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies. IEEE Trans. Geosci. Remote Sens. 45, 1808–1822 (2007).

    Article  Google Scholar 

  35. 35.

    Blackburn, G. A. Wavelet decomposition of hyperspectral data: A novel approach to quantifying pigment concentrations in vegetation. Int. J. Remote Sens. 28, 2831–2855 (2007).

    Article  Google Scholar 

  36. 36.

    Blackburn, G. A. & Ferwerda, J. G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sens. Environ. 112, 1614–1632 (2008).

    Article  Google Scholar 

  37. 37.

    Banskota, A. et al. Investigating the utility of wavelet transforms for inverting a 3-D radiative transfer model using hyperspectral data to retrieve forest LAI. Remote Sens. 5, 2639–2659 (2013).

    Article  Google Scholar 

  38. 38.

    Hernández-Clemente, R., North, P. R. J., Hornero, A. & Zarco-Tejada, P. J. Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure. Remote Sens. Environ. 193, 165–179 (2017).

    Article  Google Scholar 

  39. 39.

    Vilfan, N., van der Tol, C., Muller, O., Rascher, U., & Verhoef, W. Fluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra. Remote Sens. Environ. 186, 596–615 (2016).

    Article  Google Scholar 

  40. 40.

    North, P. R. J. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Trans. Geosci. Remote Sens. 34, 946–956 (1996).

    Article  Google Scholar 

  41. 41.

    North, P. R. J., Rosette, J. A. B., Suárez, J. C. & Los, S. O. A Monte Carlo radiative transfer model of satellite waveform LiDAR. Int. J. Remote Sens. 31, 1343–1358 (2010).

    Article  Google Scholar 

  42. 42.

    Jacquemoud, S. & Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 34, 75–91 (1990).

    Article  Google Scholar 

  43. 43.

    Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 16, 125–141 (1984).

    Article  Google Scholar 

  44. 44.

    Khattree, R. & Naik, D. N. Multivariate Data Reduction and Discrimination with SAS Software (Wiley-SAS, Hoboken, NJ, 2000).

  45. 45.

    Meyer, D. et al. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. v.1.6-8 (CRAN, 2017); https://CRAN.R-project.org/package=e1071

  46. 46.

    Ripley, B. & Venables, W. in Modern Applied Statistics with S 4th edn (Springer-Verlag, New York, NY, 2002).

  47. 47.

    Kuhn, M. et al. caret: Classification and Regression Training v6.0-78 (CRAN, 2017); https://CRAN.R-project.org/package=caret

  48. 48.

    Richards, J. A. Remote Sensing Digital Image Analysis (Springer-Verlag, Berlin, 1999).

Download references

Acknowledgements

We thank Z.G. Cerovic, J. Flexas, F. Morales and P. Martín for scientific discussions; QuantaLab-IAS-CSIC for laboratory assistance; and G. Altamura, A. Ceglie and D. Tavano for field support. The study was funded by the European Union’s Horizon 2020 research and innovation programme through grant agreements POnTE (635646) and XF-ACTORS (727987). The views expressed are purely those of the writers and may not in any circumstance be regarded as stating an official position of the European Commission.

Author information

Affiliations

Authors

Contributions

P.J.Z.-T., C.C., P.S.A.B., B.B.L., D.B., M.S. and J.A.N.-C. designed research. P.J.Z.-T., C.C., P.S.A.B., R.C., A.H., R.H.-C., T.K., M.M.-B., L.S., M.M., V.G.-D., P.R.J.N., B.B.L., D.B., M.S. and J.A.N.-C. performed research. P.J.Z.-T., C.C., P.S.A.B., R.C., A.H., R.H.-C., T.K., V.G.-D. and J.A.N.-C. analysed data. P.J.Z.-T., C.C., P.S.A.B. and J.A.N.-C. wrote the paper. All authors provided comments, and read and approved the final submission.

Corresponding author

Correspondence to P. J. Zarco-Tejada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3 and Supplementary Tables 1–7

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarco-Tejada, P.J., Camino, C., Beck, P.S.A. et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants 4, 432–439 (2018). https://doi.org/10.1038/s41477-018-0189-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing