Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Ancient plant DNA in the genomic era

Next-generation sequencing technologies have significantly changed the scope of ancient plant DNA research, moving from analysis of a few loci to generation of ancient genomes. Future research could refine our understanding of plant evolution and adaptation, and provide information for conservation, crop breeding and food security.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sub-fossilised plant macro-remains sources of ancient plant DNA.

Similar content being viewed by others


  1. Willerslev, E. et al. Science 317, 111–114 (2007).

    Article  CAS  Google Scholar 

  2. Orlando, L. & Cooper, A. Annu. Rev. Ecol. Evol. Syst. 45, 573–598 (2014).

    Article  Google Scholar 

  3. Palmer, S. A., Smith, O. & Allaby, R. G. Ann. Anat. 194, 146–156 (2012).

    Article  CAS  Google Scholar 

  4. Jiao, W. B. & Schneeberger, K. Curr. Opin. Plant Biol. 36, 64–70 (2017).

    Article  CAS  Google Scholar 

  5. Styring, A. K. et al. J. Archaeol. Sci. 40, 4767–4779 (2013).

    Article  CAS  Google Scholar 

  6. Nistelberger, H. M., Smith, O., Wales, N., Star, B. & Boessenkool, S. Sci. Rep. 6, 37347 (2016).

    Article  CAS  Google Scholar 

  7. Wales, N., Andersen, K., Cappellini, E., Avila-Arcos, M. C. & Gilbert, M. T. P. PLoS ONE 9, e86827 (2014).

    Article  Google Scholar 

  8. Schrader, C., Schielke, A., Ellerbroek, L. & Johne, R. J. Appl. Microbiol. 113, 1014–1026 (2012).

    Article  CAS  Google Scholar 

  9. Mascher, M. et al. Nat. Genet. 48, 1089–1093 (2016).

    Article  CAS  Google Scholar 

  10. Ramos-Madrigal, J. et al. Curr. Biol. 26, 3195–3201 (2016).

    Article  CAS  Google Scholar 

  11. da Fonseca, R. R. et al. Nat. Plants 1, 14003 (2015).

    Article  Google Scholar 

  12. Kistler, L. et al. Proc. Natl Acad. Sci. USA 111, 1–5 (2014).

    Article  Google Scholar 

  13. Wagner, S. et al. Mol. Ecol. 27, 1138–1154 (2018).

    Article  CAS  Google Scholar 

  14. Sallon, S. et al. Science 320, 1464 (2008).

    Article  CAS  Google Scholar 

  15. Pérez-Zamorano, B. et al. Genome Biol. Evol. 9, 904–915 (2017).

    Article  Google Scholar 

  16. Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y. & Nambara, E. Plant J. 41, 697–709 (2005).

    Article  CAS  Google Scholar 

  17. Fordyce, S. L. et al. PLoS ONE 8, 1–9 (2013).

    Article  Google Scholar 

  18. Smith, O. et al. Mol. Biol. Evol. 37, 2555–2562 (2017).

    Article  Google Scholar 

  19. Yoshida, K. et al. eLife 2, 1–25 (2013).

    Google Scholar 

  20. Martin, M. D. et al. Nat. Commun. 4, 2172 (2013).

    Article  Google Scholar 

  21. Smith, O. et al. Sci. Rep. 4, 4003 (2014).

    Article  Google Scholar 

  22. Cubas, P., Vincent, C. & Coen, E. Nature 401, 157–161 (1999).

    Article  CAS  Google Scholar 

  23. Springer, N. M. & Schmitz, R. J. Nat. Rev. Genet. 18, 563–575 (2017).

    Article  CAS  Google Scholar 

  24. Lämke, J. & Bäurle, I. Genome Biol. 18, 1–11 (2017).

    Article  Google Scholar 

  25. Llamas, B. et al. PLoS One 7, e30226 (2012).

    Article  CAS  Google Scholar 

  26. Gokhman, D. et al. Science 344, 523–527 (2014).

    Article  CAS  Google Scholar 

  27. Smith, O. et al. Sci. Rep. 4, 5559 (2015).

    Article  Google Scholar 

  28. Meyer, R. S., DuVal, A. E. & Jensen, H. R. New Phytol. 196, 29–48 (2012).

    Article  Google Scholar 

  29. Bevan, M. W. et al. Nature 543, 346–354 (2017).

    Article  CAS  Google Scholar 

  30. Gururani, M. A. et al. Physiol. Mol. Plant Pathol. 78, 51–65 (2012).

    Article  CAS  Google Scholar 

  31. Mickelbart, M. V., Hasegawa, P. M. & Bailey-Serres, J. Nat. Rev. Genet. 16, 237–251 (2015).

    Article  CAS  Google Scholar 

  32. Khoury, C. K. et al. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).

    Article  CAS  Google Scholar 

  33. Massawe, F., Mayes, S. & Cheng, A. Trends Plant Sci. 21, 365–368 (2016).

    Article  CAS  Google Scholar 

  34. Mueller, N. G., Fritz, G. J., Patton, P., Carmody, S. & Horton, E. T. Nat. Plants 3, 1–5 (2017).

    Article  Google Scholar 

Download references


We thank Geoff Fincher and Matthew Gilliham from the University of Adelaide, Birger Lindberg-Møeller from the University of Copenhagen, and Birgitte Skadhauge from Carlsberg’s Research Laboratory. O.E. is supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) and the University of Adelaide Graduate Centre. We thank Elizabeth Reed and Kathryn Hill from the University of Adelaide for providing the samples from Naracoorte Cave. We also thank Nelli Hovhannisyan from the Yerevan State University and Boris Gasparyan, National Academy of Sciences of Armenia, Institute of Archaeology and Ethnography for providing the samples from Areni-1 Cave.

Author information

Authors and Affiliations


Corresponding author

Correspondence to James Breen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada, O., Breen, J., Richards, S.M. et al. Ancient plant DNA in the genomic era . Nature Plants 4, 394–396 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing