Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth

Abstract

Vascular cambium proliferation in plants is crucial for the generation of vascular tissues and for mechanical strength. Phytohormones and mobile peptides are key regulators of vascular cambial activity during secondary growth; however, the signalling cross-talk underlying their coordinated action is largely unknown. Here, we reveal that BIN2-LIKE 1 (BIL1), a glycogen synthase kinase 3, integrates the PHLOEM INTERCALATED WITH XYLEM/tracheary element differentiation inhibitory factor (TDIF) RECEPTOR (PXY/TDR) module into MONOPTEROS/AUXIN RESPONSE FACTOR 5 (MP/ARF5) transcription factor action during secondary growth. BIL1-mediated phosphorylation of MP/ARF5 enhances its negative effect on vascular cambial activity, which upregulates the negative regulators of cytokinin signalling ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) and ARR15. PXY/TDR inhibits BIL1 activity, which attenuates the effect of MP/ARF5 on ARR7 and ARR15 expression, thus increasing vascular cambial activity. Together, these results suggest that BIL1 is a key mediator that links peptide signalling with auxin–cytokinin signalling for the maintenance of cambial activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BIL1 is a negative regulator of cambial activity.
Fig. 2: BIL1-mediated MP phosphorylation negatively regulates cambial activity.
Fig. 3: BIL1 and MP attenuate the cytokinin response to regulate cambial activity.
Fig. 4: TDIF–PXY functions upstream of the BIL1–MP module and suppresses their negative effect on cambial activity.

Similar content being viewed by others

References

  1. De Rybel, B., Mähönen, A. P., Helariutta, Y. & Weijers, D. Plant vascular development: from early specification to differentiation. Nat. Rev. Mol. Cell Biol. 17, 30–40 (2016).

    Article  PubMed  CAS  Google Scholar 

  2. Jouannet, V., Brackmann, K. & Greb, T. (Pro)cambium formation and proliferation: two sides of the same coin? Curr. Opin. Plant Biol. 23, 54–60 (2015).

    Article  PubMed  Google Scholar 

  3. Chandler, J. W. & Werr, W. Cytokinin–auxin crosstalk in cell type specification. Trends Plant Sci. 20, 291–300 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Schaller, G. E., Bishopp, A. & Kieber, J. J. The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27, 44–63 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. De Rybel, B. et al. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345, 1255215 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Bishopp, A. et al. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr. Biol. 21, 917–926 (2011).

    Article  PubMed  CAS  Google Scholar 

  7. Matsumoto-Kitano, M. et al. Cytokinins are central regulators of cambial activity. Proc. Natl Acad. Sci. USA 105, 20027–20031 (2008).

    Article  PubMed  Google Scholar 

  8. Suer, S., Agusti, J., Sanchez, P., Schwarz, M. & Greb, T. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23, 3247–3259 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Berleth, T. & Jurgens, G. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118, 575–587 (1993).

    Google Scholar 

  10. Hardtke, C. S. & Berleth, T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405–1411 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Krogan, N. T., Ckurshumova, W., Marcos, D., Caragea, A. E. & Berleth, T. Deletion of MP/ARF5 domains III and IV reveals a requirement for Aux/IAA regulation in Arabidopsis leaf vascular patterning. New Phytol. 194, 391–401 (2012).

    Article  PubMed  CAS  Google Scholar 

  12. Garrett, J. J. T. et al. A novel, semi-dominant allele of MONOPTEROS provides insight into leaf initiation and vein pattern formation. Planta 236, 297–312 (2012).

    Article  PubMed  CAS  Google Scholar 

  13. Brackmann, K. et al. Spatial specificity of auxin responses coordinates wood formation. Nat. Commun. 9, 875 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vert, G., Walcher, C. L., Chory, J. & Nemhauser, J. L. Integration of auxin and brassinosteroid pathways by auxin response factor 2. Proc. Natl Acad. Sci. USA 105, 9829–9834 (2008).

    Article  PubMed  Google Scholar 

  15. Cho, H. et al. A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nat. Cell Biol. 16, 66–76 (2014).

    Article  PubMed  CAS  Google Scholar 

  16. Fisher, K. & Turner, S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr. Biol. 17, 1061–1066 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Kondo, Y. et al. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF–TDR signalling. Nat. Commun. 5, 3504 (2014).

    Article  PubMed  CAS  Google Scholar 

  18. Etchells, J. P., Smit, M. E., Gaudinier, A., Williams, C. J. & Brady, S. M. A brief history of the TDIF–PXY signalling module: balancing meristem identity and differentiation during vascular development. New Phytol. 209, 474–484 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. Kondo, Y., Fujita, T., Sugiyama, M. & Fukuda, H. A novel system for xylem cell differentiation in Arabidopsis thaliana. Mol. Plant 8, 612–621 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Kondo, Y. et al. Vascular cell induction culture system using Arabidopsis leaves (VISUAL) reveals the sequential differentiation of sieve element-like cells. Plant Cell 28, 1250–1262 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liu, Z. B., Ulmasov, T., Shi, X., Hagen, G. & Guilfoyle, T. J. Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6, 645–657 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kovtun, Y., Chiu, W. L., Tena, G. & Sheen, J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl Acad. Sci. USA 97, 2940–2945 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. Agusti, J. et al. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc. Natl Acad. Sci. USA 108, 20242–20247 (2011).

    Article  PubMed  Google Scholar 

  24. Yan, Z., Zhao, J., Peng, P., Chihara, R. K. & Li, J. BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. Plant Physiol. 150, 710–721 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hamann, T., Benková, E., Bäurle, I., Kientz, M. & Jürgens, G. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 16, 1610–1615 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hejátko, J. et al. The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots. Plant Cell 21, 2008–2021 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Brandstatter, I. & Kieber, J. J. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10, 1009–1019 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhao, Z. et al. Hormonal control of the shoot stem-cell niche. Nature 465, 1089–1092 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Donner, T. J., Sherr, I. & Scarpella, E. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136, 3235–3246 (2009).

    Article  PubMed  Google Scholar 

  30. Schlereth, A. et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464, 913–916 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. Lee, D. J. et al. Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Mol. Genet. Genomics 277, 115–137 (2007).

    Article  PubMed  CAS  Google Scholar 

  32. Hirakawa, Y., Kondo, Y. & Fukuda, H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22, 2618–2629 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Agusti, J., Lichtenberger, R., Schwarz, M., Nehlin, L. & Greb, T. Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genet. 7, e1001312-14 (2011).

    Article  CAS  Google Scholar 

  34. Shi, D., Tavhelidse, T., Thumberger, T., Wittbrodt, J. & Greb, T. Bifacial stem cell niches in fish and plants. Curr. Opin. Genet. Dev. 45, 28–33 (2017).

    Article  PubMed  CAS  Google Scholar 

  35. Etchells, J. P. & Turner, S. R. Realizing pipe dreams—a detailed picture of vascular development. J. Exp. Bot. 68, 1–4 (2017).

    Article  PubMed  CAS  Google Scholar 

  36. Gursanscky, N. R. et al. MOL1 is required for cambium homeostasis in Arabidopsis. Plant J. 86, 210–220 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Williams, R. W., Wilson, J. M. & Meyerowitz, E. M. A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc. Natl Acad. Sci. USA 94, 10467–10472 (1997).

    Article  PubMed  CAS  Google Scholar 

  38. Stone, J., Trotochaud, A., Walker, J. & Clark, S. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol. 117, 1217–1225 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Vanneste, S. & Friml, J. Auxin: a trigger for change in plant development. Cell 136, 1005–1016 (2009).

    Article  PubMed  CAS  Google Scholar 

  40. Ohmori, Y., Tanaka, W., Kojima, M., Sakakibara, H. & Hirano, H.-Y. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice. Plant Cell 25, 229–241 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Oles, V., Panchenko, A. & Smertenko, A. Modeling hormonal control of cambium proliferation. PLoS ONE 12, e0171927 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Leibfried, A. et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438, 1172–1175 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. Betsuyaku, S., Sawa, S. & Yamada, M. Function of the CLE peptides in plant development and plant–microbe interactions. Arabidopsis Book 9, e0149 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Müller, B. & Sheen, J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453, 1094–1097 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Plant. 147, 46–54 (2013).

    Article  PubMed  CAS  Google Scholar 

  46. Fromm, J. Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiol. 30, 1140–1147 (2010).

    Article  PubMed  CAS  Google Scholar 

  47. Baba, K. et al. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proc. Natl Acad. Sci. USA 108, 3418–3423 (2011).

    Article  PubMed  Google Scholar 

  48. Saidi, Y., Hearn, T. J. & Coates, J. C. Function and evolution of ‘green’ GSK3/Shaggy-like kinases. Trends Plant Sci. 17, 39–46 (2012).

    Article  PubMed  CAS  Google Scholar 

  49. Charrier, B., Champion, A., Henry, Y. & Kreis, M. Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol. 130, 577–590 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sehr, E. M. et al. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J. 63, 811–822 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

    Google Scholar 

  54. Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  PubMed  CAS  Google Scholar 

  55. Nagaraj, N. et al. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol. Cell Proteomics 11, M111.013722 (2012).

    Article  PubMed  CAS  Google Scholar 

  56. Michalski, A. et al. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell Proteomics 10, M111.011015 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Olsen, J. V. et al. Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 4, 709–712 (2007).

    Article  PubMed  CAS  Google Scholar 

  58. Shin, B. et al. Postexperiment monoisotopic mass filtering and refinement (PE-MMR) of tandem mass spectrometric data increases accuracy of peptide identification in LC/MS/MS. Mol. Cell Proteomics 7, 1124–1134 (2008).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Choi and F. Rolland for critical reading of the manuscript and useful suggestions. This work was carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ010953022018) Rural Development Administration, Republic of Korea, and with the support of Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017R1A2A1A17069734).

Author information

Authors and Affiliations

Authors

Contributions

S.H., H.C., J.N., J.Q. and H.N. performed the experiments. H.-J.J. and D.H. performed the LC–MS/MS analysis. S.L. analysed the RNA-seq data. S.H., H.C., T.G. and I.H. designed the experiments and analysed the data. S.H., H.C. and I.H. wrote the manuscript.

Corresponding author

Correspondence to Ildoo Hwang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9 and Supplementary Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Cho, H., Noh, J. et al. BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. Nature Plants 4, 605–614 (2018). https://doi.org/10.1038/s41477-018-0180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0180-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing