Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PORCUPINE regulates development in response to temperature through alternative splicing

Abstract

Recent findings suggest that alternative splicing has a critical role in controlling the responses of plants to temperature variations. However, alternative splicing factors in plants are largely uncharacterized. Here we establish the putative splice regulator, PORCUPINE (PCP), as temperature-specific regulator of development in Arabidopsis thaliana. Our findings point to the misregulation of WUSCHEL and CLAVATA3 as the possible cause for the meristem defects affecting the pcp-1 loss-of-function mutants at low temperatures.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PCP is essential for development at low temperature.
Fig. 2: Effects of pcp-1 on the transcriptome of A. thaliana seedlings.

References

  1. 1.

    Suzuki, D. T. Science 170, 695–706 (1970).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    O’Rourke, S. M. et al. PLoS ONE 6, e16644 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Eki, T. et al. J. Biol. Chem. 265, 26–33 (1990).

    PubMed  CAS  Google Scholar 

  4. 4.

    Hartwell, L. H., Culotti, J., & Reid, B. Proc. Natl Acad. Sci. USA 66, 352–359 (1970).

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Moir, D., Stewart, S. E., Osmond, B. C. & Botstein, D. Genetics 100, 547–563 (1982).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Pickett, F. B., Champagne, M. M. & Meeks-Wagner, D. R. Development 122, 3799–3807 (1996).

    PubMed  CAS  Google Scholar 

  7. 7.

    Yasutani, I., Ozawa, S., Nishida, T., Sugiyama, M. & Komamine, A. Plant Physiol. 105, 815–822 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Verhage, L. et al. PLoS ONE 12, e0172950 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Streitner, C. et al. Plant Signal. Behav. 8, e24638 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Capovilla, G., Pajoro, A., Immink, R. G. H. & Schmid, M. Curr. Opin. Plant Biol. 27, 97–103 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Wang, B.-B. & Brendel, V. Genome Biol. 5, R102 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ito, J. et al. J. Proteome Res. 10, 1571–1582 (2011).

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Cao, J. et al. J. Biomol. Struct. Dyn. 28, 535–544 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Kalyna, M., Lopato, S., Voronin, V. & Barta, A. Nucleic Acids Res. 34, 4395–4405 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Kalyna, M. et al. Nucleic Acids Res. 40, 2454–2469 (2012).

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Han, P. & Zhu, Y.-X. Plant Signal. Behav. 4, 52–54 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Black, D. L., Chabot, B. & Steitz, J. A. Cell 42, 737–750 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Rosbash, M. & Séraphin, B. Trends Biochem. Sci. 16, 187–190 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Somssich, M., Je, B. I., Simon, R. & Jackson, D. Development 143, 3238–3248 (2016).

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Capovilla, G., Symeonidi, E., Wu, R. & Schmid, M. J. Exp. Bot. 68, 5117–5127 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    de Francisco Amorim, M. et al. Preprint at bioRxiv. https://doi.org/10.1101/150805 (2017).

  22. 22.

    Kopylova, E., Noé, L. & Touzet, H. Bioinformatics 28, 3211–3217 (2012).

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Bolger, A. M., Lohse, M. & Usadel, B. Bioinformatics 30, 2114–2120 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Nat. Biotechnol. 34, 525–527 (2016).

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Berardini, T. Z. et al. Genesis 53, 474–485 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Gentleman, R. C. et al. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Soneson, C., Love, M. I. & Robinson, M. D. F1000Res. 4, 1521 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Love, M. I., Huber, W. & Anders, S. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Anders, S., Reyes, A. & Huber, W. Genome Res. 22, 2008–2017 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Sundell, D. et al. New Phytol. 208, 1149–1156 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. PLoS ONE 6, e21800 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Palatnik, J. F. et al. Nature 425, 257–263 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Dinneny, J. R., Yadegari, R., Fischer, R. L., Yanofsky, M. F. & Weigel, D. Development 131, 1101–1110 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Roeder, A. H. K., Ferrándiz, C. & Yanofsky, M. F. Curr. Biol. 13, 1630–1635 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Cheng, M.-M., Mitra, N. J., Huang, X., Torr, P. H. S. & Hu, S.-M. IEEE Trans. Pattern Anal. Mach. Intell. 37, 569–582 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Berger for assistance with scanning electron microscopy, N. Davidson for help with the initial RNA-seq analyses, A. Mangilet for sharing U1-70K plasmids and E. Scacchi for discussion. Supported by the DFG through the Sonderforschungsbereich 1101 (Collaborative Research Centre 1101), project SFB1101/1-C04 and the Knut and Alice Wallenberg Foundation (KAW 2016.0025) to M.S.

Author information

Affiliations

Authors

Contributions

G.C. and M.S. designed the experiments. G.C. performed the RNA-seq experiments, identified and phenotyped the pcp mutants and performed RNA in situ hybridization experiments. S.C. performed the expression analysis of the RNA-seq data obtained from Col-0 grown at 16 °C, 23 °C and 27 °C. N.D. performed the alternative splicing RNA-seq analyses with help from I.S. I.B. analysed the growth rate in pcp-1 seedlings. M.d.F.A. and S.L. generated the U1-70K construct used in this study. E.S. contributed to genotyping of the transgenic lines generated by G.C. G.C. and M.S. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Markus Schmid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1–5 and legends for Supplementary Files 1–4.

Reporting Summary

Supplementary File 1

List of DE genes in Col-0 at 16°C and 27°C.

Supplementary File 2

Differential expression analyses results for pcp-1 and WT grown under different temperatures.

Supplementary File 3

Lists of DE genes between Col-0 and pcp-1.

Supplementary File 4

Curated list of meristem genes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Capovilla, G., Delhomme, N., Collani, S. et al. PORCUPINE regulates development in response to temperature through alternative splicing. Nature Plants 4, 534–539 (2018). https://doi.org/10.1038/s41477-018-0176-z

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing