Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis

Abstract

Flowers have a species-specific functional life span that determines the time window in which pollination, fertilization and seed set can occur. The stigma tissue plays a key role in flower receptivity by intercepting pollen and initiating pollen tube growth toward the ovary. In this article, we show that a developmentally controlled cell death programme terminates the functional life span of stigma cells in Arabidopsis. We identified the leaf senescence regulator ORESARA1 (also known as ANAC092) and the previously uncharacterized KIRA1 (also known as ANAC074) as partially redundant transcription factors that modulate stigma longevity by controlling the expression of programmed cell death–associated genes. KIRA1 expression is sufficient to induce cell death and terminate floral receptivity, whereas lack of both KIRA1 and ORESARA1 substantially increases stigma life span. Surprisingly, the extension of stigma longevity is accompanied by only a moderate extension of flower receptivity, suggesting that additional processes participate in the control of the flower’s receptive life span.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stigma degeneration is a developmentally timed process correlated with loss of floral receptivity.
Fig. 2: Ageing unpollinated papilla cells die in a dPCD-like process.
Fig. 3: KIR1 and ORE1 are upregulated in senescent papilla cells.
Fig. 4: ORE1 and KIR1 redundantly control stigma life span.
Fig. 5: Overexpression of ORE1 and KIR1 induces senescence and cell death symptoms to varying degrees.
Fig. 6: ORE1 and KIR1 homodimers and heterodimers directly control expression of dPCD-associated genes.
Fig. 7: Loss of KIR1 and ORE1 function moderately extends seed set in aged flowers.

Similar content being viewed by others

References

  1. Rogers, H. J. From models to ornamentals: how is flower senescence regulated?. Plant Mol. Biol. 82, 563–574 (2013).

    Article  PubMed  CAS  Google Scholar 

  2. Jones, M. L. Ethylene signaling is required for pollination-accelerated corolla senescence in petunias. Plant Sci. 175, 190–196 (2008).

    Article  CAS  Google Scholar 

  3. Williams, R. R. The effect of summer nitrogen applications on the quality of apple blossom. J. Horticult. Sci. 40, 31–41 (1965).

    Article  Google Scholar 

  4. Shahri, W. & Tahir, I. Flower senescence: some molecular aspects. Planta 239, 277–297 (2014).

    Article  PubMed  CAS  Google Scholar 

  5. Shibuya, K., Yamada, T., & Ichimura, K. Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence. J. Exp. Bot. 67, 5909–5918 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. Broderick, S. R. et al. RNA-sequencing reveals early, dynamic transcriptome changes in the corollas of pollinated petunias. BMC Plant Biol. 14, 307 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wagstaff, C., Yang, T. J., Stead, A. D., Buchanan-Wollaston, V., & Roberts, J. A. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant J. 57, 690–705 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Shibuya, K., Shimizu, K., Niki, T. & Ichimura, K. Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory. Plant J. 79, 1044–1051 (2014).

    Article  PubMed  CAS  Google Scholar 

  9. Kim, H. J. et al. Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signalling in Arabidopsis. J. Exp. Bot. 65, 4023–4036 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim, J. H. et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323, 1053–1057 (2009).

    Article  PubMed  CAS  Google Scholar 

  11. Dickman, M., Williams, B., Li, Y., de Figueiredo, P., & Wolpert, T. Reassessing apoptosis in plants. Nat. Plants 3, 773–779 (2017).

    Article  PubMed  CAS  Google Scholar 

  12. Thomas, H. Senescence, ageing and death of the whole plant. New Phytol. 197, 696–711 (2013).

    Article  PubMed  Google Scholar 

  13. Daneva, A., Gao, Z., Van Durme, M. & Nowack, M. K. Functions and regulation of programmed cell death in plant development. Annu Rev. Cell Dev. Biol. 32, 441–468 (2016).

    Article  PubMed  CAS  Google Scholar 

  14. Huysmans, M., Lema, A. S., Coll, N. S. & Nowack, M. K. Dying two deaths – programmed cell death regulation in development and disease. Curr. Opin. Plant Biol. 35, 37–44 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Olvera-Carrillo, Y. et al. A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiol. 169, 2684–2699 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Heslop-Harrison, Y. & Shivanna, K. R. The receptive surface of the angiosperm stigma. Ann. Bot. 41, 1233–1258 (1977).

    Article  Google Scholar 

  17. Dresselhaus, T. & Franklin-Tong, N. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol. Plant 6, 1018–1036 (2013).

    Article  PubMed  CAS  Google Scholar 

  18. Christensen, C. A., King, E. J., Jordan, J. R. & Drews, G. N. Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex. Plant Reprod. 10, 49–64 (1997).

    Article  Google Scholar 

  19. Weijers, D., Van Hamburg, J. P., Van Rijn, E., Hooykaas, P. J. & Offringa, R. Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development. Plant Physiol. 133, 1882–1892 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hackett, R. M., Cadwallader, G. & Franklin, F. C. Functional analysis of a Brassica oleracea SLR1 gene promoter. Plant Physiol. 112, 1601–1607 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Thorsness, M. K., Kandasamy, M. K., Nasrallah, M. E. & Nasrallah, J. B. Genetic ablation of floral cells in Arabidopsis. Plant Cell 5, 253–261 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fendrych, M. et al. Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Curr. Biol. 24, 931–940 (2014).

    Article  PubMed  CAS  Google Scholar 

  23. Jones, K., Kim, D. W., Park, J. S. & Khang, C. H. Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. BMC Plant Biol. 16, 69 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kim, H. J., Nam, H. G., & Lim, P. O. Regulatory network of NAC transcription factors in leaf senescence. Curr. Opin. Plant Biol. 33, 48–56 (2016).

    Article  PubMed  CAS  Google Scholar 

  25. Balazadeh, S. et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J. 62, 250–264 (2010).

    Article  PubMed  CAS  Google Scholar 

  26. He, X. J. et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44, 903–916 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. Hiratsu, K., Matsui, K., Koyama, T., & Ohme-Takagi, M. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34, 733–739 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. Mitsuda, N. et al. CRES-T, an effective gene silencing system utilizing chimeric repressors. Methods Mol. Biol. 754, 87–105 (2011).

    Article  PubMed  CAS  Google Scholar 

  29. Zhou, L. Z. et al. Expression analysis of KDEL-CysEPs programmed cell death markers during reproduction in Arabidopsis. Plant Reprod. 29, 265–272 (2016).

    Article  PubMed  CAS  Google Scholar 

  30. Siligato, R. et al. MultiSite gateway-compatible cell type-specific gene-inducible system for plants. Plant Physiol. 170, 627–641 (2016).

    Article  PubMed  CAS  Google Scholar 

  31. Matallana-Ramirez, L. P. et al. NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis. Mol. Plant 6, 1432–1452 (2013).

    Article  CAS  Google Scholar 

  32. Vanden Bossche, R., Demedts, B., Vanderhaeghen, R. & Goossens, A. Transient expression assays in tobacco protoplasts. Methods Mol. Biol. 1011, 227–239 (2013).

    Article  PubMed  CAS  Google Scholar 

  33. Johnson, M. A. et al. Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168, 971–982 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Carbonell-Bejerano, P., Urbez, C., Carbonell, J., Granell, A. & Perez-Amador, M. A. A fertilization-independent developmental program triggers partial fruit development and senescence processes in pistils of Arabidopsis. Plant Physiol. 154, 163–172 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sanzol, J., & Herrero, M. The “effective pollination period” in fruit trees. Sci. Hortic. 90, 1–17 (2001).

    Article  Google Scholar 

  36. Ohashi-Ito, K., Oda, Y. & Fukuda, H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 22, 3461–3473 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. van Doorn, W. G. Classes of programmed cell death in plants, compared to those in animals. J. Exp. Bot. 62, 4749–4761 (2011).

    Article  PubMed  CAS  Google Scholar 

  38. van Doorn, W. G. et al. Morphological classification of plant cell deaths. Cell Death Differ. 18, 1241–1246 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Obara, K., Kuriyama, H. & Fukuda, H. Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol. 125, 615–626 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Crawford, B. C. & Yanofsky, M. F. HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 138, 2999–3009 (2011).

    Article  PubMed  CAS  Google Scholar 

  41. Ferradás, Y., López, M., Rey, M. & González, M. V. Programmed cell death in kiwifruit stigmatic arms and its relationship to the effective pollination period and the progamic phase. Ann. Bot. 114, 35–45 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bac-Molenaar, J. A. et al. Genome-wide association mapping of fertility reduction upon heat stress reveals developmental stage-specific QTLs in Arabidopsis thaliana. Plant Cell 27, 1857–1874 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Franco-Zorrilla, J. M. et al. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc. Natl Acad. Sci. USA 111, 2367–2372 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Thomas-Chollier, M. et al. RSAT: regulatory sequence analysis tools. Nucleic Acids Res. 36, W119–W127 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ritter, A. et al. The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis. Nat. Commun. 8, 15235 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wong, J. L., Leydon, A. R. & Johnson, M. A. HAP2(GCS1)-dependent gamete fusion requires a positively charged carboxy-terminal domain. PLoS Genet 6, e1000882 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Leroux, C. et al. PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination. Plant Physiol. 167, 367–380 (2015).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the PCD laboratory for discussions and critical feedback on the manuscript, V. Storme for assistance with statistical analysis, and A. Bleys for help with preparing the manuscript. We gratefully acknowledge funding from the Chinese Scholarship Council (CSC; project number 201206910025 to Z.G.), the Fonds Wetenschappelijk Onderzoek (FWO; project number G005112N to A.D.; fellowship number 12I7417N to Z.L.), the Belgian Federal Science Policy Office (BELSPO; to Y.S.), the Agency for Innovation by Science and Technology of Belgium (IWT; fellowship number 121110 to M.V.D.), the Hercules foundation (grant AUGE-09-029 to K.D.), and the ERC StG PROCELLDEATH (project number 639234 to M.K.N.).

Author information

Authors and Affiliations

Authors

Contributions

Z.G. and A.D., designed and performed most of the experiments. Y.S. initiated the project and performed experiments. M.V.D., M.H., Z.L., F.D.W., S.V. and M.K. performed experiments, analysed the data and interpreted the results. J.V.d.V. and K.V. performed TF binding site predictions. D.V.d.W. and K.D. contributed to the cryo-scanning electron microscopy experiments, and B.N.L. contributed to the setup of stigma live-cell imaging. M.K.N. supervised the project and designed the experiments. Z.G., A.D. and M.K.N. wrote the manuscript.

Corresponding author

Correspondence to Moritz K. Nowack.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary References, Supplementary Table 2 and Supplementary Methods

Reporting Summary

Supplementary Table 1

Cluster analysis of differentially expressed genes identified by RNA sequencing of developmental stigma series.

Supplementary Table 3

A table of all primers used in this study.

Supplementary Video 1

Macroscopic phenotyping of an unpollinated stigma life span with an SLR camera.

Supplementary Video 2

Macroscopic phenotyping of an unpollinated stigma life span with the webcam system.

Supplementary Video 3

Microscopic imaging of stigmatic papilla cell death.

Supplementary Video 4

Microscopic imaging of stigmatic papilla cells dying in clusters.

Supplementary Video 5

Microscopic imaging of cell death events taking place in dying papilla cell.

Supplementary Video 6

ORE1 and KIR1 mutants show extended papilla life spans.

Supplementary Video 7

Induced overexpression of KIR1 and ORE1 leads to growth arrest and death of entire seedlings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Daneva, A., Salanenka, Y. et al. KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis. Nature Plants 4, 365–375 (2018). https://doi.org/10.1038/s41477-018-0160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0160-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing