The SERK3 elongated allele defines a role for BIR ectodomains in brassinosteroid signalling

Abstract

The leucine-rich repeat receptor kinase (LRR-RK) BRASSINOSTEROID INSENSITIVE 1 (BRI1) requires a shape-complementary SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) co-receptor for brassinosteroid sensing and receptor activation1. Interface mutations that weaken the interaction between receptor and co-receptor in vitro reduce brassinosteroid signalling responses2. The SERK3 elongated (elg) allele3,4,5 maps to the complex interface and shows enhanced brassinosteroid signalling, but surprisingly no tighter binding to the BRI1 ectodomain in vitro. Here, we report that rather than promoting the interaction with BRI1, the elg mutation disrupts the ability of the co-receptor to interact with the ectodomains of BRI1-ASSOCIATED-KINASE1 INTERACTING KINASE (BIR) receptor pseudokinases, negative regulators of LRR-RK signalling6. A conserved lateral surface patch in BIR LRR domains is required for targeting SERK co-receptors and the elg allele maps to the core of the complex interface in a 1.25 Å BIR3–SERK1 structure. Collectively, our structural, quantitative biochemical and genetic analyses suggest that brassinosteroid signalling complex formation is negatively regulated by BIR receptor ectodomains.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: SERK3 elg is a gain of function mutation in vivo but not in vitro.
Fig. 2: BIR ectodomains interact with different SERK co-receptors in vitro.
Fig. 3: The BIR2 ectodomain adopts a SERK-like fold with an additional lateral protein interaction interface.
Fig. 4: A BIR3–SERK1 complex structure provides a mechanism for SERK gain-of-function mutations.

References

  1. 1.

    Santiago, J., Henzler, C. & Hothorn, M. Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science 341, 889–892 (2013).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Hohmann, U. et al. Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors. Proc. Natl Acad. Sci. USA 115, 3488–3493 (2018).

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Halliday, K., Devlin, P. F., Whitelam, G. C., Hanhart, C. & Koornneef, M. The ELONGATED gene of Arabidopsis acts independently of light and gibberellins in the control of elongation growth. Plant J. 9, 305–312 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Whippo, C. W. & Hangarter, R. P. A brassinosteroid-hypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signaling modulates phototropism. Plant Physiol. 139, 448–457 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. 5.

    Jaillais, Y., Belkhadir, Y., Balsemão-Pires, E., Dangl, J. L. & Chory, J. Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proc. Natl Acad. Sci. USA 108, 8503–8507 (2011).

    Article  PubMed  Google Scholar 

  6. 6.

    Imkampe, J. et al. The Arabidopsis leucine-rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1. Plant Cell 29, 2285–2303 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. 7.

    Clouse, S. D., Langford, M. & McMorris, T. C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111, 671–678 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Li, J. & Chory, J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90, 929–938 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Hothorn, M. et al. Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474, 467–471 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    She, J. et al. Structural insight into brassinosteroid perception by BRI1. Nature 474, 472–476 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Sun, Y. et al. Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide. Cell Res. 23, 1326–1329 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Wang, X. et al. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell 15, 220–235 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Bojar, D. et al. Crystal structures of the phosphorylated BRI1 kinase domain and implications for brassinosteroid signal initiation. Plant J. 78, 31–43 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Hohmann, U., Lau, K. & Hothorn, M. The structural basis of ligand perception and signal activation by receptor kinases. Annu. Rev. Plant Biol. 68, 109–137 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Belkhadir, Y. et al. Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc. Natl Acad. Sci. USA 109, 297–302 (2012).

    Article  PubMed  Google Scholar 

  16. 16.

    McAndrew, R. et al. Structure of the OsSERK2 leucine-rich repeat extracellular domain. Acta Crystallogr. D. Biol. Crystallogr. 70, 3080–3086 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Friedrichsen, D. M., Joazeiro, C. A. P., Li, J., Hunter, T. & Chory, J. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol. 123, 1247–1256 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Halter, T. et al. The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Curr. Biol. 24, 134–143 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Ma, C. et al. Structural basis for BIR1-mediated negative regulation of plant immunity. Cell Res. 27, 1521–1524 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Santiago, J. et al. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife 5, e15075 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Gao, M. et al. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6, 34–44 (2009).

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Liu, Y., Huang, X., Li, M., He, P. & Zhang, Y. Loss-of-function of Arabidopsis receptor-like kinase BIR1 activates cell death and defense responses mediated by BAK1 and SOBIR1. New Phytol. 212, 637–645 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Blaum, B. S. et al. Structure of the pseudokinase domain of BIR2, a regulator of BAK1-mediated immune signaling in Arabidopsis. J. Struct. Biol. 186, 112–121 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    He, Z. et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288, 2360–2363 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Wang, Z., Meng, P., Zhang, X., Ren, D. & Yang, S. BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperature-dependent plant growth and cell death in Arabidopsis. Plant J. 67, 1081–1093 (2011).

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Li, Y., Gou, M., Sun, Q. & Hua, J. Requirement of calcium binding, myristoylation, and protein-protein interaction for the Copine BON1 function in Arabidopsis. J. Biol. Chem. 285, 29884–29891 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Bücherl, C. A. et al. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 6, e25114 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Hashimoto, Y., Zhang, S. & Blissard, G. W. Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins. BMC Biotechnol. 10, 50 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Kozma, P., Hamori, A., Cottier, K., Kurunczi, S. & Horvath, R. Grating coupled interferometry for optical sensing. Appl. Phys. B 97, 5–8 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Kemmerling for kindly providing us with BIR2 and BIR3 polyclonal antibodies, N. Geldner for providing seeds, and the staff at beam line PXIII of the Swiss Light Source, Villigen, Switzerland, for technical assistance during data collection, J. Santiago for providing the SERK2 expression plasmid, and K. Lau for help with preparing figures. This work was supported by grant 31003A_176237 from the Swiss National Science Foundation and by an International Research Scholar Award from the Howard Hughes Medical Institute (to M.H.).

Author information

Affiliations

Authors

Contributions

U.H. and M.H. designed research. U.H. performed most of the experiments. J.N. contributed to generation and characterization of transgenic lines and A.M. conducted experiments on the cytoplasmic domains. U.H., A.M., L.A.H. and M.H. analysed data. U.H. and M.H. wrote the manuscript.

Corresponding author

Correspondence to Michael Hothorn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–10, Supplementary Tables 1–3 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hohmann, U., Nicolet, J., Moretti, A. et al. The SERK3 elongated allele defines a role for BIR ectodomains in brassinosteroid signalling. Nature Plants 4, 345–351 (2018). https://doi.org/10.1038/s41477-018-0150-9

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing