Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes

Abstract

Lignin is a complex and irregular biopolymer of crosslinked phenylpropanoid units in plant secondary cell walls. Its biosynthesis requires three endoplasmic reticulum (ER)-resident cytochrome P450 monooxygenases, C4H, C3ʹH and F5H, to establish the structural characteristics of its monomeric precursors. These P450 enzymes were reported to associate with each other or potentially with other soluble monolignol biosynthetic enzymes to form an enzyme complex or a metabolon. However, the molecular basis governing such enzyme or pathway organization remains elusive. Here, we show that Arabidopsis membrane steroid-binding proteins (MSBPs) serve as a scaffold to physically organize monolignol P450 monooxygenases, thereby regulating the lignin biosynthetic process. We find that although C4H, C3ʹH and F5H are in spatial proximity to each other on the ER membrane in vivo, they do not appear to directly interact with each other. Instead, two MSBP proteins physically interact with all three P450 enzymes and, moreover, MSBPs themselves associate as homomers and heteromers on the ER membrane, thereby organizing P450 clusters. Downregulation of MSBP genes does not affect the transcription levels of monolignol biosynthetic P450 genes but substantially impairs the stability and activity of the MSBP-interacting P450 enzymes and, consequently, lignin deposition, and the accumulation of soluble phenolics in the monolignol branch but not in the flavonoid pathway. Our study suggests that MSBP proteins are essential structural components in the ER membrane that physically organize and stabilize the monolignol biosynthetic P450 enzyme complex, thereby specifically controlling phenylpropanoid–monolignol branch biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical interactions of monolignol biosynthetic enzymes detected with mbSUS-Y2H.
Fig. 2: MSBP1 and MSBP2 interact with C4H, C3ʹH and F5H in vivo.
Fig. 3: MSBP1 and MSBP2 form homomers and heteromers in vivo.
Fig. 4: Knocking down MSBP results in an Arabidopsis growth defect.
Fig. 5: Accumulation levels of soluble phenolics and lignin in MSBP knockdown lines.
Fig. 6: Effect of downregulation of MSBP on P450 enzyme activity, protein stability and membrane localization.

Similar content being viewed by others

References

  1. Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Weng, J. K., Li, X., Bonawitz, N. D. & Chapple, C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opin. Biotechnol. 19, 166–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 3, 2–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Jorgensen, K. et al. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Srere, P. A. The metabolon. Trends Biochem. Sci. 10, 109–110 (1985).

    Article  Google Scholar 

  6. Achnine, L., Blancaflor, E. B., Rasmussen, S. & Dixon, R. A. Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16, 3098–3109 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bassard, J. E. et al. Protein–protein and protein–membrane associations in the lignin pathway. Plant Cell 24, 4465–4482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rasmussen, S. & Dixon, R. A. Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell 11, 1537–1551 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Winkel-Shirley, B. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol. Plant. 107, 142–149 (1999).

    Article  CAS  Google Scholar 

  10. Chen, H. C. et al. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis. Proc. Natl Acad. Sci. USA 108, 21253–21258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mifsud, W. & Bateman, A. Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain. Genome Biol. 3, RESEARCH0068 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rohe, H. J., Ahmed, I. S., Twist, K. E. & Craven, R. J. PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol. Ther. 121, 14–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Piel, R. B. 3rd et al. A novel role for progesterone receptor membrane component 1 (PGRMC1): a partner and regulator of ferrochelatase. Biochemistry 55, 5204–5217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hand, R. A., Jia, N., Bard, M. & Craven, R. J. Saccharomyces cerevisiae Dap1p, a novel DNA damage response protein related to the mammalian membrane-associated progesterone receptor. Eukaryot. Cell 2, 306–317 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mallory, J. C. et al. Dap1p, a heme-binding protein that regulates the cytochrome P450 protein Erg11p/Cyp51p in Saccharomyces cerevisiae. Mol. Cell. Biol. 25, 1669–1679 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghosh, K. et al. Spectroscopic and biochemical characterization of heme binding to yeast Dap1p and mouse PGRMC1p. Biochemistry 44, 16729–16736 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaluka, D., Batabyal, D., Chiang, B. Y., Poulos, T. L. & Yeh, S. R. Spectroscopic and mutagenesis studies of human PGRMC1. Biochemistry 54, 1638–1647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hughes, A. L. et al. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab. 5, 143–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Min, L. et al. Molecular identification of adrenal inner zone antigen as a heme-binding protein. FEBS J. 272, 5832–5843 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Min, L. et al. Characterization of the adrenal-specific antigen IZA (inner zone antigen) and its role in the steroidogenesis. Mol. Cell Endocrinol. 215, 143–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Kabe, Y. et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat. Commun. 7, 11030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, X. H., Xu, Z. H. & Xue, H. W. Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell 17, 116–131 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song, L., Shi, Q. M., Yang, X. H., Xu, Z. H. & Xue, H. W. Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Cell Res. 19, 864–876 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, X., Song, L. & Xue, H. W. Membrane steroid binding protein 1 (MSBP1) stimulates tropism by regulating vesicle trafficking and auxin redistribution. Mol. Plant 1, 1077–1087 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl Acad. Sci. USA 91, 10340–10344 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stagljar, I., Korostensky, C., Johnsson, N. & te Heesen, S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl Acad. Sci. USA 95, 5187–5192 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grefen, C., Lalonde, S. & Obrdlik, P. Split-ubiquitin system for identifying protein-protein interactions in membrane and full-length proteins. Curr. Protoc. Neurosci. 41, 1–41 (2007).

    Google Scholar 

  28. Obrdlik, P. et al. K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proc. Natl Acad. Sci. USA 101, 12242–12247 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dastmalchi, M., Bernards, M. A. & Dhaubhadel, S. Twin anchors of the soybean isoflavonoid metabolon: evidence for tethering of the complex to the endoplasmic reticulum by IFS and C4H. Plant J. 85, 689–706 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Ozalp, C., Szczesna-Skorupa, E. & Kemper, B. Bimolecular fluorescence complementation analysis of cytochrome p450 2c2, 2e1, and NADPH-cytochrome p450 reductase molecular interactions in living cells. Drug Metab. Dispos. 33, 1382–1390 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Sundin, L. et al. Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification. Plant Physiol. 166, 1956–1971 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Qi, Y. & Katagiri, F. Purification of low-abundance Arabidopsis plasma-membrane protein complexes and identification of candidate components. Plant J. 57, 932–944 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Matsushima, R. et al. An endoplasmic reticulum-derived structure that is induced under stress conditions in Arabidopsis. Plant Physiol. 130, 1807–1814 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Larsson, C., Sommarin, M. & Widell, S. Isolation of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicles. Methods Enzymol. 228, 451–496 (1994).

    Article  CAS  Google Scholar 

  35. Zhang, X., Gou, M. & Liu, C. J. Arabidopsis Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase. Plant Cell 25, 4994–5010 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mitsuda, N. & Ohme-Takagi, M. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Plant J. 56, 768–778 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Ryu, C. S., Klein, K. & Zanger, U. M. Membrane associated progesterone receptors: promiscuous proteins with pleiotropic functions - focus on interactions with cytochromes P450. Front. Pharmacol. 8, 159 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Backes, W. L. & Kelley, R. W. Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes. Pharmacol. Ther. 98, 221–233 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Kelley, R. W., Cheng, D. & Backes, W. L. Heteromeric complex formation between CYP2E1 and CYP1A2: evidence for the involvement of electrostatic interactions. Biochemistry 45, 15807–15816 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scott, E. E. et al. The role of protein–protein and protein–membrane interactions on P450 function. Drug Metab. Dispos. 44, 576–590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kerppola, T. K. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu. Rev. Biophys. 37, 465–487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kerppola, T. K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 1, 1278–1286 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Urban, P., Mignotte, C., Kazmaier, M., Delorme, F. & Pompon, D. Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. J. Biol. Chem. 272, 19176–19186 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Ro, D. K., Ehlting, J. & Douglas, C. J. Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar. Plant Physiol. 130, 1837–1851 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bao, H. et al. The developing xylem transcriptome and genome-wide analysis of alternative splicing in Populus trichocarpa (black cottonwood) populations. BMC Genom. 14, 359 (2013).

    Article  CAS  Google Scholar 

  46. Karimi, M., Inze, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Shevchenko, A. et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl Acad. Sci. USA 93, 14440–14445 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gehl, C., Waadt, R., Kudla, J., Mendel, R. R. & Hansch, R. New GATEWAY vectors for high throughput analyses of protein–protein interactions by bimolecular fluorescence complementation. Mol. Plant 2, 1051–1058 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Menke, F. L. et al. Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol. Plant Microbe Interact. 18, 1027–1034 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Nakagawa, T. et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 104, 34–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, K. et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 5, 3274 (2014).

    PubMed  Google Scholar 

  52. Pradhan Mitra, P. & Loque, D. Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J. Vis. Exp. 87, e51381 (2014).

    Google Scholar 

  53. Zhang, K. et al. An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell 24, 3135–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, C.-J., Huhman, D., Sumner, L. W. & Dixon, R. A. Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes from Medicago truncatula. Plant J. 36, 471–484 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Edwards, R. & Kessmann, H. in Molecular Plant Pathology (eds Gurr, S. J. et al.) 45–52 (IRL, Oxford, 1992).

  56. Gou, M. et al. The MYB107 transcription factor positively regulates suberin biosynthesis. Plant Physiol. 173, 1045–1058 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Hara-Nishimura at Kyoto University for providing the SP–GFP–HDEL transgenic Arabidopsis seeds. We thank A. Koller at Stony Brook University Proteomics Center for LC–MS analysis of protein complexes. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-SC0012704, specifically through the Physical Biosciences programme of the Chemical Sciences, Geosciences and Biosciences Division (to C.-J.L.). The protein co-immunoprecipitation and sequence analysis was partially supported by the Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0001090. This research used a confocal microscope of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under contract no. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Contributions

C.-J.L. and M.G. designed the experiments. M.G. and X.R. conducted the experiments. D.W.M processed the proteomic raw data and was responsible for the data deposition. C.-J.L. and M.G. analysed and interpreted the data and wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Chang-Jun Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–15, Supplementary Tables 1–3 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, M., Ran, X., Martin, D.W. et al. The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Nature Plants 4, 299–310 (2018). https://doi.org/10.1038/s41477-018-0142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0142-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing