Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray structure of an asymmetrical trimeric ferredoxin–photosystem I complex

Abstract

Photosystem I (PSI), a large protein complex located in the thylakoid membrane, mediates the final step in light-driven electron transfer to the stromal electron carrier protein ferredoxin (Fd). Here, we report the first structural description of the PSI–Fd complex from Thermosynechococcus elongatus. The trimeric PSI complex binds three Fds in a non-equivalent manner. While each is recognized by a PSI protomer in a similar orientation, the distances between Fds and the PSI redox centres differ. Fd binding thus entails loss of the exact three-fold symmetry of the PSI’s soluble subunits, inducing structural perturbations which are transferred to the lumen through PsaF. Affinity chromatography and nuclear magnetic resonance analyses of PSI–Fd complexes support the existence of two different Fd-binding states, with one Fd being more tightly bound than the others. We propose a dynamic structural basis for productive complex formation, which supports fast electron transfer between PSI and Fd.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of the cyanobacterial PSI–Fd complex.
Fig. 2: Intermolecular interactions between Fd and PSI.
Fig. 3: NMR chemical shift perturbation.
Fig. 4: Structural changes in PSI induced by Fd binding calculated from the Fd-free PSI structure (PDB ID: 1JB0).
Fig. 5: Structural differences between the Fd-bound PSI trimer and the corresponding PSI monomer.

Similar content being viewed by others

References

  1. Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411, 909–917 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Kurisu, G. et al. Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat. Struct. Biol. 8, 117–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Dai, S. et al. Structural snapshots along the reaction pathway of ferredoxin-thioredoxin reductase. Nature 448, 92–96 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, J. Y., Nakayama, M., Toyota, H., Kurisu, G. & Hase, T. Structural and mutational studies of an electron transfer complex of maize sulfite reductase and ferredoxin. J. Biochem. 160, 101–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Ruffle, S. V., Mustafa, A. O., Kitmitto, A., Holzenburg, A. & Ford, R. C. The location of the mobile electron carrier ferredoxin in vascular plant photosystem I. J. Biol. Chem. 275, 36250–36255 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Lelong, C. et al. Characterization of a redox active cross-linked complex between cyanobacterial photosystem I and soluble ferredoxin. EMBO J. 15, 2160–2168 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fromme, P., Bottin, H., Krauss, N. & Setif, P. Crystallization and electron paramagnetic resonance characterization of the complex of photosystem I with its natural electron acceptor ferredoxin. Biophys. J. 83, 1760–1773 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mutoh, R. et al. X-ray structure and nuclear magnetic resonance analysis of the interaction sites of the Ga-substituted cyanobacterial ferredoxin. Biochemistry 54, 6052–6061 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Mignée, C., Mutoh, R., Krieger-Liszkay, A., Kurisu, G. & Sétif, P. Gallium ferredoxin as a tool to study the effects of ferredoxin binding to photosystem I without ferredoxin reduction. Photosynth. Res. 134, 251–263 (2017).

    Article  PubMed  Google Scholar 

  10. Sakakibara, Y. et al. A new structural insight into differential interaction of cyanobacterial and plant ferredoxins with nitrite reductase as revealed by NMR and X-ray crystallographic studies. J. Biochem. 151, 483–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Sétif, P. in Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase (ed J.H. Golbeck) Ch. 26, 439–454 (Springer, Dordrecht, 2006).

  12. Kovalenko, I. B., Abaturova, A. M., Riznichenko, G. Y. & Rubin, A. B. Computer simulation of interaction of photosystem 1 with plastocyanin and ferredoxin. Biosystems 103, 180–187 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. El-Mohsnawy, E. et al. Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 49, 4740–4751 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Fischer, N., Sétif, P. & Rochaix, J. D. Site-directed mutagenesis of the PsaC subunit of photosystem I: Fb is the cluster interacting with soluble ferredoxin. J. Biol. Chem. 274, 23333–23340 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Barth, P., Guillouard, I., Sétif, P. & Lagoutte, B. Essential role of a single arginine of photosystem I in stabilizing the electron transfer complex with ferredoxin. J. Biol. Chem. 275, 7030–7036 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bottin, H., Hanley, J. & Lagoutte, B. Role of acidic amino acid residues of PsaD subunit on limiting the affinity of photosystem I for ferredoxin. Biochem. Biophys. Res. Comm. 287, 833–836 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Hanley, J., Sétif, P., Bottin, H. & Lagoutte, B. Mutagenesis of photosystem I in the region of the ferredoxin cross-linking site: modifications of positively charged amino acids. Biochemistry 35, 8563–8571 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Chitnis, V. P., Jungs, Y. S., Albee, L., Golbeck, J. H. & Chitnis, P. R. Mutational analysis of photosystem I polypeptides: role of PsaD and the lysyl 106 residue in the reductase activity of the photosystem I. J. Biol. Chem. 271, 11772–11780 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, H. et al. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342, 1104–1107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, Q., Yu, L., Chitnis, V. P. & Chitnis, P. R. Function and organization of photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J. Biol. Chem. 269, 3205–3211 (1994).

    CAS  PubMed  Google Scholar 

  21. Busch, A. & Hippler, M. The structure and function of eukaryotic photosystem I. Biochim. Biophys. Acta 1807, 864–877 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Jeanjean, R. et al. A photosystem 1 psaFJ-null mutant of the cyanobacterium Synechocystis PCC 6803 expresses the isiAB operon under iron replete conditions. FEBS Lett. 549, 52–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Mazor, Y., Borovikova, A., Caspy, I. & Nelson, N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nature Plants 3, 17014 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Amunts, A., Drory, O. & Nelson, N. The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447, 58–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Qin, X., Suga, M., Kuang, T. & Shen, J. R. Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348, 989–995 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Malavath, T., Caspy, I., Netzer-El, S. Y., Klaman, D. & Nelson, N. Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta. http://doi.org/cmmt (2018).

  27. Mazor, Y., Nataf, D., Toporik, H. & Nelson, N. Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. eLife 3, e01496 (2014).

    Article  PubMed Central  Google Scholar 

  28. Baker, D. R. et al. Comparative photoactivity and stability of isolated cyanobacterial monomeric and trimeric Photosystem I. J. Phys. Chem. B 118, 2703–2711 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Klodawska, K. et al. Elevated growth temperature can enhance photosystem I trimer formation and affects xanthophyll biosynthesis in Cyanobacterium Synechocystis sp. PCC6803 cells. Plant Cell Physiol. 56, 558–571 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Kubota, H. et al. Purification and characterization of photosystem I complex from Synechocystis sp. PCC 6803 by expressing histidine-tagged subunits. Biochim. Biophys. Acta 1797, 98–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Collaborative Computational Project, N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  32. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  33. The PyMOL Molecular Graphics System, Version 1.3r1 (Schrodinger, LLC, 2010).

  34. Nakanishi, T. et al. Determination of the interface of a large protein complex by transferred cross-saturation measurements. J. Mol. Biol. 318, 245–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Sétif, P. Q. & Bottin, H. Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I: spectral and kinetic evidence for the existence of several photosystem I-ferredoxin complexes. Biochemistry 34, 9059–9070 (1995).

    Article  PubMed  Google Scholar 

  36. Akashi, T. et al. Comparison of the electrostatic binding sites on the surface of ferredoxin for two ferredoxin-dependent enzymes, ferredoxin-NADP+ reductase and sulfite reductase. J. Biol. Chem. 274, 29399–29405 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Info. Model. 51, 2778–2786 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Hase for valuable discussions on the Fd-affinity chromatography; T. Kikuchi, P. Liauw, Y. Takagi, E. El-Mohsnawy, N. Muraki and T. Oyama for technical help in the initial stage of this project; E. Yamashita, A. Higashiura and A. Nakagawa at SPring-8, Harima, Japan; and the staff at the Taiwan Light Source, Hsinchu, Taiwan, R.O.C for support during data collection. This work was supported by the Funding Programme for Next Generation World-Leading Researchers (GS016) from the Cabinet Office of Japan (G.K.) and an International Joint Research Promotion Programme, Osaka University (G.K. and M.R.).

Author information

Authors and Affiliations

Authors

Contributions

Purification of WTFd was conducted by K.S. Preparation of GaFd was conducted by R.M. Purification of His-tagged PSI was introduced for structural analysis by H.K.-K., M.N. and M.R. Flash-absorption spectroscopy was carried out by P.S. Crystallization and X-ray data collection of PSI–Fd complexes were conducted by H.K-K. The crystal structures of PSI–Fd were solved by H.T., H.K-K. and G.K. NMR analysis was done by R.M. and T.I. G.K. contributed to the design of the experiments and writing the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Genji Kurisu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7 and Supplementary Table 1.

Reporting Summary

Supplementary GIF 1

Top view of the superimposed models of the free PSI coloured in grey and the Fd-bound PSI trimer in dark green. Each Fd molecule is coloured in yellow, green and cyan.

Supplementary GIF 2

Side view of the same superimposed models of Supplementary GIF 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota-Kawai, H., Mutoh, R., Shinmura, K. et al. X-ray structure of an asymmetrical trimeric ferredoxin–photosystem I complex. Nature Plants 4, 218–224 (2018). https://doi.org/10.1038/s41477-018-0130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0130-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing