An apoplastic peptide activates salicylic acid signalling in maize

Abstract

Localized control of cell death is crucial for the resistance of plants to pathogens. Papain-like cysteine proteases (PLCPs) regulate plant defence to drive cell death and protection against biotrophic pathogens. In maize (Zea mays), PLCPs are crucial in the orchestration of salicylic acid (SA)-dependent defence signalling. Despite this central role in immunity, it remains unknown how PLCPs are activated, and which downstream signals they induce to trigger plant immunity. Here, we discover an immune signalling peptide, Z. mays immune signalling peptide 1 (Zip1), which is produced after salicylic acid (SA) treatment. In vitro studies demonstrate that PLCPs are required to release bioactive Zip1 from its propeptide precursor. Conversely, Zip1 treatment strongly elicits SA accumulation in leaves. Moreover, transcriptome analyses revealed that Zip1 and SA induce highly overlapping transcriptional changes. Consequently, Zip1 promotes the infection of the necrotrophic fungus Botrytis cinerea, while it reduces virulence of the biotrophic fungus Ustilago maydis. Thus, Zip1 represents the previously missing signal that is released by PLCPs to activate SA defence signalling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Induction of SA-associated PR gene expression by apoplastic peptide fraction and by Zip1.
Fig. 2: Active PLCPs are required for processing of PROZIP1.
Fig. 3: In vitro released Zip1 is active in vivo.
Fig. 4: Zip1-induced accumulation of SA in maize leaves and RNA-sequencing analyses of Zip1- and SA-treated maize leaves.
Fig. 5: Zip1 confers increased susceptibility of maize towards the necrotrophic pathogen Botrytis cinerea but mitigates infection by the biotrophic fungus Ustilago maydis.

References

  1. 1.

    van der Hoorn, R. A. L. Plant proteases: from phenotypes to molecular mechanisms. Annu Rev. Plant Biol. 59, 191–223 (2008).

    Article  PubMed  Google Scholar 

  2. 2.

    Xia, Y. et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23, 980–988 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Tian, M., Huitema, E., da Cunha, L., Torto-Alalibo, T. & Kamoun, S. A kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J. Biol. Chem. 279, 26370–26377 (2004).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Tornero, P., Conejero, V. & Vera, P. Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: similarity of functional domains to subtilisin-like endoproteases. Proc. Natl Acad. Sci. USA 93, 6332–6337 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Stegmann, M. et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355, 287–289 (2017).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Misas-Villamil, J. C., van der Hoorn, R. A. L. & Doehlemann, G. Papain-like cysteine proteases as hubs in plant immunity. New Phytol. 212, 902–907 (2016).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Rooney, H. C. et al. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308, 1783–1786 (2005).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Song, J. et al. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc. Natl Acad. Sci. USA 106, 1654–1659 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Lozano-Torres, J. L. et al. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proc. Natl Acad. Sci. USA 109, 10119–10124 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Pieterse, C. M., Leon-Reyes, A., Van der Ent, S. & Van Wees, S. C. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316 (2009).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Yan, S. & Dong, X. Perception of the plant immune signal salicylic acid. Curr. Opin. Plant Biol. 20, 64–68 (2014).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Doherty, H. M., Selvendran, R. R. & Bowles, D. J. The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Phys. Mol. Plant Pathol. 33, 377–384 (1988).

    CAS  Article  Google Scholar 

  14. 14.

    Pefia-Cortes, H., Albrecht, T., Prat, S., Weiler, E. W. & Willmitzer, L. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191, 123–128 (1993).

    Google Scholar 

  15. 15.

    Thomma, B. P. et al. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl Acad. Sci. USA 95, 15107–15111 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Huffaker, A. et al. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc. Natl Acad. Sci. USA 110, 5707–5712 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Huffaker, A., Dafoe, N. J. & Schmelz, E. A. ZmPep1, an ortholog of Arabidopsis elicitor petide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol. 155, 1325–1338 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Huffaker, A., Pearce, G. & Ryan, C. A. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl Acad. Sci. USA 103, 10098–10103 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Brefort, T. et al. Ustilago maydis as a pathogen. Annu. Rev. Phytopathol. 47, 423–445 (2009).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Doehlemann, G. et al. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J. 56, 181–195 (2008).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Hof, A., Zechmann, B., Schwammbach, D., Huckelhoven, R. & Doehlemann, G. Alternative cell death mechanisms determine epidermal resistance in incompatible barley-ustilago interactions. Mol. Plant Microbe. Interact. 27, 403–414 (2014).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Doehlemann, G. et al. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog. 5, e1000290 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    van der Linde, K. et al. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell 24, 1285–1300 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Mueller, A. N., Ziemann, S., Treitschke, S., Assmann, D. & Doehlemann, G. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog. 9, (2013).

  25. 25.

    Dolezal, A. L. et al. Aspergillus flavus infection induces transcriptional and physical changes in developing maize kernels. Front Microbiol. 5, 384 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ray, S. et al. Turnabout is fair play: herbivory-induced plant chitinases excreted in fall armyworm frass suppress herbivore defenses in maize. Plant Physiol. 171, 694–706 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Barrett, A. J., Kembhavi, A. A. & Hanada, K. E-64 [L-trans-epoxysuccinyl-leucyl-amido(4-guanidino)butane] and related epoxides as inhibitors of cysteine proteinases. Acta Biol. Med Ger. 40, 1513–1517 (1981).

    CAS  PubMed  Google Scholar 

  28. 28.

    Cravatt, B. F., Wright, A. T. & Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev. Biochem 77, 383–414 (2008).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Greenbaum, D., Medzihradszky, K. F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Paireder, M. et al. The death enzyme CP14 is a unique papain-like cysteine proteinase with a pronounced S2 subsite selectivity. Arch. Biochem Biophys. 603, 110–117 (2016).

    Article  PubMed  Google Scholar 

  31. 31.

    Choe, Y. et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 281, 12824–12832 (2006).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Zipfel, C. et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760 (2006).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767 (2004).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Monaghan, J. et al. The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover. Cell Host Microbe 16, 605–615 (2014).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Miya, A. et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl Acad. Sci. 104, 19613–19618 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Jabaiah, A. M., Getz, J. A., Witkowski, W. A., Hardy, J. A. & Daugherty, P. S. Identification of protease exosite-interacting peptides that enhance substrate cleavage kinetics. Biol. Chem. 393, 933–941 (2012).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Lori, M. et al. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling. J. Exp. Bot. 66, 5315–5325 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Bartels, S. & Boller, T. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. J. Exp. Bot. 66, 5183–5193 (2015).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    van der Linde, K. et al. Pathogen Trojan horse delivers bioactive host protein to alter maize (Zea mays) anther cell behavior in situ. Plant Cell. https://doi.org/10.1105/tpc.17.00238 (2018).

  40. 40.

    Cirino, G. & Vergnolle, N. Proteinase-activated receptors (PARs): crossroads between innate immunity and coagulation. Curr. Opin. Pharmacol. 6, 428–434 (2006).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Schmidlin, F. & Bunnett, N. W. Protease-activated receptors: how proteases signal to cells. Curr. Opin. Pharmacol. 1, 575–582 (2001).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Srivastava, R., Liu, J. X., Guo, H., Yin, Y. & Howell, S. H. Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J. 59, 930–939 (2009).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Srivastava, R., Liu, J. X. & Howell, S. H. Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. Plant J. 56, 219–227 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Paireder, M. et al. The papain-like cysteine proteinases NbCysP6 and NbCysP7 are highly processive enzymes with substrate specificities complementary to Nicotiana benthamiana cathepsin B. Biochim Biophys Acta 1865, 444–452 (2017).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Chen, Z., Zheng, Z., Huang, J., Lai, Z. & Fan, B. Biosynthesis of salicylic acid in plants. Plant Signal. Behav. 4, 493–496 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Djamei, A. et al. Metabolic priming by a secreted fungal effector. Nature 478, 395–398 (2011).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Acosta, I. et al. Tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323, 262–265 (2009).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Huffaker, A. et al. Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol. 156, 2082–2097 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    van der Linde, K., Kastner, C., Kumlehn, J., Kahmann, R. & Doehlemann, G. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytol. 189, 471–483 (2011).

    Article  PubMed  Google Scholar 

  50. 50.

    Pearce, G. et al. Isolation and characterization of hydroxyproline-rich glycopeptide signals in black nightshade leaves. Plant Physiol. 150, 1422–1433 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Pearce, G., Strydom, D., Johnson, S. & Ryan, C. A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895–897 (1991).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Ryan, C., Pearce, G., Scheer, J. & Moura, D. Polypeptide hormones. Plant Cell Online, 251–264 (2002).

  53. 53.

    Chen, Y. C., Siems, W. F., Pearce, G. & Ryan, C. A. Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. J. Biol. Chem. 283, 11469–11476 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is funded by the German Research Foundation (DFG) via grant DO 1421/5-1 (GD). Mass spectrometry work was financially supported by an ERC starting grant (M.K., grant No. 258413) and the Deutsche Forschungsgemeinschaft (M.K., grant no. INST 20876/127-1 FUGG). Research in the Zipfel laboratory is supported by the Gatsby Charitable Foundation. We are very grateful to R. Kahmann for helpful discussions and the Max Planck Institute for Terrestrial Microbiology, Marburg, Germany, for continuous support and access to laboratory facilities. We are also very thankful to A. Matei for meaningful discussions and for critical reading the manuscript. We thank R. van der Hoorn (Oxford University) for generously providing us with ABPP probes.

Author contributions

S.Z., K.L. and G.D. designed the experiments and analysed the data. S.Z., K.L. and B.A. performed the functional analysis of Zip1/PROZIP1. N.H. and C.Z. designed and analysed ROS and MAPK assays. Y.D., A.H. and E.S. designed, performed and analysed salicylic acid measurements. U.L. analysed the transcriptome data. F.K., T.C. and M.K. performed MS experiments and MS-related data analysis. S.Z. and G.D. wrote the manuscript with input from all authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gunther Doehlemann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Supplementary References, Supplementary Figures 1–7, Supplementary Table 2, Supplementary Table 3.

Life Sciences Reporting Summary

Supplementary Table 1

Complete gene list of RNAseq analyses with differentially expressed genes in response to SA and Zip1 compared to mock samples, respectively

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ziemann, S., van der Linde, K., Lahrmann, U. et al. An apoplastic peptide activates salicylic acid signalling in maize. Nature Plants 4, 172–180 (2018). https://doi.org/10.1038/s41477-018-0116-y

Download citation

Further reading