Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Computational analysis of the productivity potential of CAM

Abstract

There is considerable interest in transferring crassulacean acid metabolism (CAM) to C3 crops to improve their water-use efficiency. However, because the CAM biochemical cycle is energetically costly, it is unclear what impact this would have on yield. Using diel flux balance analysis of the CAM and C3 leaf metabolic networks, we show that energy consumption is three-fold higher in CAM at night. However, this additional cost of CAM can be entirely offset by the carbon-concentrating effect of malate decarboxylation behind closed stomata during the day. Depending on the resultant rates of the carboxylase and oxygenase activities of rubisco, the productivity of the PEPCK-CAM subtype is 74–100% of the C3 network. We conclude that CAM does not impose a significant productivity penalty and that engineering CAM into C3 crops is likely to lead to a major increase in water-use efficiency without substantially affecting yield.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A simplified schematic of the CAM cycle in starch-storing leaves.
Fig. 2: A representation of major proton-consuming and proton-producing reactions in the CAM model.
Fig. 3: ATP production and consumption in C3 and CAM systems.
Fig. 4: Predicted productivity of CAM leaves with varying rubisco carboxylase/oxygenase (vC/vO) ratios.

References

  1. Borland, A. M. et al. Engineering crassulacean acid metabolism to improve water-use efficiency. Trends Plant Sci. 19, 327–338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Borland, A. M., Griffiths, H., Hartwell, J. & Smith, J. A. C. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J. Exp. Bot. 60, 2879–2896 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Yang, X. et al. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytol. 207, 491–504 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Borland, A. M., Guo, H. B., Yang, X. & Cushman, J. C. Orchestration of carbohydrate processing for crassulacean acid metabolism. Curr. Opin. Plant Biol. 31, 118–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Jordan, P. W., Nobel, P. S., Gazette, B. & Dec, N. Height distributions of two species of cacti in relation to rainfall, seedling establishment, and growth. Bot. Gaz. 143, 511–517 (2007).

    Article  Google Scholar 

  6. Yan, X. Y., Tan, D. K. Y., Inderwildi, O. R., Smith, J. A. C. & King, D. A. Life cycle energy and greenhouse gas analysis for agave-derived bioethanol. Energy Environ. Sci. 4, 3110–3121 (2011).

    Article  CAS  Google Scholar 

  7. Nobel, P. & Valenzuela, A. Environmental responses and productivity of the CAM plant, Agave tequilana. Agric. For. Meteorol. 39, 319–334 (1987).

    Article  Google Scholar 

  8. Smith, A. M. Starch in the Arabidopsis plant. Starch 64, 421–434 (2012).

    Article  CAS  Google Scholar 

  9. Nobel, P. S. Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytol. 119, 183–205 (1991).

    Article  CAS  Google Scholar 

  10. Winter, K. & Smith, J. A. C. in Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution (eds. Winter, K. & Smith, J. A. C.) 389–426 (Springer-Verlag, Berlin, London, 1996).

  11. Cheung, C. Y. M., Ratcliffe, R. G. & Sweetlove, L. J. A method of accounting for enzyme costs in flux balance analysis reveals alternative pathways and metabolite stores in an illuminated Arabidopsis leaf. Plant Physiol. 169, 1671–1682 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Cheung, C. Y. M., Poolman, M. G., Fell, D. A., Ratcliffe, R. G. & Sweetlove, L. J. A diel flux balance model captures interactions between light and dark metabolism during day-night cycles in C3 and crassulacean acid metabolism leaves. Plant Physiol. 165, 917–929 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holtum, J. A. M., Smith, J. A. C. & Neuhaus, H. E. Intracellular transport and pathways of carbon flow in plants with crassulacean acid metabolism. Funct. Plant Biol. 32, 429–449 (2005).

    Article  CAS  Google Scholar 

  14. Arnold, A. & Nikoloski, Z. Bottom-up metabolic reconstruction of Arabidopsis and its application to determining the metabolic costs of enzyme production. Plant Physiol. 165, 1380–1391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schläpfer, P. et al. Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol. 173, 2041–2059 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cheung, C. Y. M. et al. A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. Plant J. 75, 1050–1061 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Valle, E. M., Boggio, S. B. & Heldt, H. W. Free amino acid composition of phloem sap and growing fruit of Lycopersicon esculentum. Plant Cell Physiol. 39, 458–461 (1998).

    Article  CAS  Google Scholar 

  18. Walker, A. J. & Ho, L. C. Carbon translocation in the tomato: effects of fruit temperature on carbon metabolism and the rate of translocation. Ann. Bot. 41, 825–832 (1977).

    Article  CAS  Google Scholar 

  19. Wang, N. & Nobel, P. S. Phloem transport of fructans in the crassulacean acid metabolism species. Agave deserti. Plant Physiol. 116, 709–714 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Gibon, Y. et al. Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the followin. Plant J. 39, 847–862 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Lewis, N. E., Nagarajan, H. & Palsson, B. O. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurkdjian, A. & Guern, J. Intracellular pH: measurement and importance in cell activity. Ann. Rev. Plant. Physiol. Plant. Mol. Biol. 40, 271–303 (1989).

    Article  CAS  Google Scholar 

  23. Cheffings, C. M., Pantoja, O., Ashcroft, F. M. & Smith, J. A. C. Malate transport and vacuolar ion channels in CAM plants. J. Exp. Bot. 48, 623–631 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Lüttge, U. & Ball, E. Electrochemical investigation of active malic acid transport at the tonoplast into the vacuoles of the CAM plant Kalanchoë daigremontiana. J. Membr. Biol. 47, 401–422 (1979).

    Article  Google Scholar 

  25. Luttge, U. & Ball, E. 2H+:1 malate2− stoichiometry during crassulacean acid metabolism is unaffected by lipophilic cations. Plant Cell Environ. 3, 195–200 (1980).

    Google Scholar 

  26. Struve, I., Weber, A., Lüttge, U., Ball, E. & Smith, J. A. C. Increased vacuolar ATPase activity correlated with CAM induction in Mesembryanthemum crystallinum and Kalanchoë blossfeldiana cv. Tom Thumb. J. Plant Physiol. 117, 451–468 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Nobel, P. S. & Hartsock, T. L. Relationships between photosynthetically active radiation, nocturnal acid accumulation, and CO2 uptake for a Crassulacean Acid Metabolism plant, Opuntia ficus-indica. Plant Physiol. 71, 71–75 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abraham, P. E. et al. Transcript, protein and metabolite temporal dynamics in the CAM plant. Agave. Nat. Plants 2, 16178 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Luttge, U. CO2-concentrating: consequences in crassulacean acid metabolism. J. Exp. Bot. 53, 2131–2142 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Niewiadomska, E. & Borland, A. Crassulacean acid metabolism: a cause or consequence of oxidative stress in planta? Prog. Bot. 69, 247–266 (2007).

    Article  Google Scholar 

  31. Lüttge, U. Photorespiration in phase III of crassulacean acid metabolism: evolutionary and ecophysiological implications. Prog. Bot. 72, 371–384 (2010).

    Google Scholar 

  32. Ma, F., Jazmin, L. J., Young, J. D. & Allen, D. K. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc. Natl Acad. Sci. USA 111, 16967–16972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pollock, C. J. & Cairns, A. J. Fructan metabolism in grasses and cereals. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 77–101 (1991).

    Article  CAS  Google Scholar 

  34. Sicher, R. C., Kremer, D. F. & Harris, W. G. Diurnal carbohydrate metabolism of barley primary leaves. Plant Physiol. 76, 165–169 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun, J., Zhang, J., Larue, C. T. & Huber, S. C. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1. Plant, Cell Environ. 34, 592–604 (2011).

    Article  CAS  Google Scholar 

  36. Couldwell, D. L. et al. Response of cytoplasmic pH to anoxia in plant tissues with altered activities of fermentation enzymes: application of methyl phosphonate as an NMR pH probe. Ann. Bot. 103, 249–258 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Mathieu, Y. et al. Regulation of vacuolar pH of plant cells: I. Isolation and properties of vacuoles suitable for 31P NMR studies. Plant Physiol. 89, 19–26 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Werdan, K., Heldt, H. W. & Milovancev, M. The role of pH in the regulation of carbon fixation in the chloroplast stroma: studies on CO2 fixation in the light and dark. Biochim. Biophys. Acta 396, 276–292 (1975).

    Article  CAS  PubMed  Google Scholar 

  39. Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst. Biol. 7, 74 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Karp, P. D., Paley, S. & Romero, P. The Pathway Tools software. Bioinformatics 18, S225–S232 (2002).

    Article  PubMed  Google Scholar 

  42. Cottret, L. et al. MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks. Nucleic Acids Res. 38, W132–W137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding from ERA-CAPS ('Simultaneous manipulation of source and sink metabolism for improved crop yield'; BO 1482/18-1 | FE 552/33-1 | RE 1351/2-1 | SW 122/2-1) is acknowledged. We would also like to thank A. Smith (Department of Plant Sciences, University of Oxford) for advice and discussions about CAM.

Author information

Authors and Affiliations

Authors

Contributions

L.J.S., R.G.R. and S.S. conceived the study and co-wrote the paper. S.S., C.Y.M.C. and K.B. constructed and curated the core model. S.S. did all subsequent computational analyses of the model and analysed the data generated.

Corresponding authors

Correspondence to R. George Ratcliffe or Lee J. Sweetlove.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, Supplementary Methods and Supplementary References.

Life Sciences Reporting Summary

Supplementary Data 1

The core diel leaf model in SBML format. Suffixes for metabolite and reaction names indicate cellular localization and whether they belong to the day or night metabolic network (suffix of 1 and 2 respectively). For example, ‘GLUCOKIN_RXN_c1’ represents a reaction occurring in the cytosol during the day. Similarly, ‘PYRUVATE_PROTON_mc2’ represents a reaction involving metabolites in night-time cytosol and mitochondria. A complete list of compartment identifiers is provided within the data file.

Supplementary Data 2

Phloem composition data used as output constraints for the diel FBA models.

Supplementary Data 3

Diel FBA flux predictions for C3 and CAM. Spreadsheet file listing all constraints applied to model C3 and CAM diel leaf metabolism and the resulting flux predictions.

Supplementary Data 4

C3 leaf diel model in SBML format, including all constraints used.

Supplementary Data 5

CAM leaf diel model in SMBL format, including all constraints used. Note that in this file the Rubisco vC/vO constraint is set.

Supplementary Data 6

Diel FBA flux predictions for different CAM subtypes. Spreadsheet file listing all constraints applied to model diel leaf metabolism in different CAM subtypes and the resulting flux predictions.

Supplementary Data 7

Manual curation log. A list of all changes made to the model as a result of manual curation. This includes modification or deletion of existing reactions and introduction of new reactions.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shameer, S., Baghalian, K., Cheung, C.Y.M. et al. Computational analysis of the productivity potential of CAM. Nature Plants 4, 165–171 (2018). https://doi.org/10.1038/s41477-018-0112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0112-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing