Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis

Abstract

Small RNAs regulate chromatin modifications such as DNA methylation and gene silencing across eukaryotic genomes. In plants, RNA-directed DNA methylation (RdDM) requires 24-nucleotide small interfering RNAs (siRNAs) that bind to ARGONAUTE 4 (AGO4) and target genomic regions for silencing. RdDM also requires non-coding RNAs transcribed by RNA polymerase V (Pol V) that probably serve as scaffolds for binding of AGO4–siRNA complexes. Here, we used a modified global nuclear run-on protocol followed by deep sequencing to capture Pol V nascent transcripts genome-wide. We uncovered unique characteristics of Pol V RNAs, including a uracil (U) common at position 10. This uracil was complementary to the 5′ adenine found in many AGO4-bound 24-nucleotide siRNAs and was eliminated in a siRNA-deficient mutant as well as in the ago4/6/9 triple mutant, suggesting that the +10 U signature is due to siRNA-mediated co-transcriptional slicing of Pol V transcripts. Expression of wild-type AGO4 in ago4/6/9 mutants was able to restore slicing of Pol V transcripts, but a catalytically inactive AGO4 mutant did not correct the slicing defect. We also found that Pol V transcript slicing required SUPPRESSOR OF TY INSERTION 5-LIKE (SPT5L), an elongation factor whose function is not well understood. These results highlight the importance of Pol V transcript slicing in RNA-mediated transcriptional gene silencing, which is a conserved process in many eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Capturing Pol V-dependent transcripts with GRO–seq.
Fig. 2: Characteristics of Pol V-dependent transcripts.
Fig. 3: Pol V transcripts are sliced in a small-RNA-dependent manner.
Fig. 4: Slicing of Pol V transcripts requires AGO4/6/9.
Fig. 5: Slicing signature of Pol V transcripts is eliminated in spt5l mutants.
Fig. 6: SPT5L is required for slicing of Pol V transcripts.

Similar content being viewed by others

References

  1. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blevins, T. et al. Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. eLife 4, e09591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhai, J. et al. A one precursor one siRNA model for Pol IV-dependent siRNA biogenesis. Cell 163, 445–455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, S. et al. Detection of Pol IV/RDR2-dependent transcripts at the genomic scale in Arabidopsis reveals features and regulation of siRNA biogenesis. Genome Res. 25, 235–245 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS. Biol. 2, E104 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Haag, J. R. et al. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol. Cell. 48, 811–818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qi, Y., Denli, A. M. & Hannon, G. J. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol. Cell. 19, 421–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Li, C. F. et al. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126, 93–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Qi, Y. et al. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443, 1008–1012 (2006).

    Article  PubMed  Google Scholar 

  11. Wierzbicki, A. T., Haag, J. R. & Pikaard, C. S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135, 635–648 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhong, X. et al. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157, 1050–1060 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Böhmdorfer, G. et al. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin. eLife 5, e19092 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wierzbicki, A. T., Ream, T. S., Haag, J. R. & Pikaard, C. S. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet. 41, 630–634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hetzel, J., Duttke, S. H., Benner, C. & Chory, J. Nascent RNA sequencing reveals distinct features in plant transcription. Proc. Natl Acad. Sci. USA 113, 12316–12321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhong, X. et al. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat. Struct. Mol. Biol. 19, 870–875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson, L. M. et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507, 124–128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smale, S. T. & Kadonaga, J. T. The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Sollner-Webb, B. & Reeder, R. H. The nucleotide sequence of the initiation and termination sites for ribosomal RNA transcription in X. laevis. Cell 18, 485–499 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Zecherle, G. N., Whelen, S. & Hall, B. D. Purines are required at the 5′ ends of newly initiated RNAs for optimal RNA polymerase III gene expression. Mol. Cell. Biol. 16, 5801–5810 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes. Dev. 21, 2539–2544 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mi, S. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Havecker, E. R. et al. The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22, 321–334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, H. et al. Deep sequencing of small RNAs specifically associated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions. Plant J. 67, 292–304 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vo Ngoc, L., Cassidy, C. J., Huang, C. Y., Duttke, S. H. C. & Kadonaga, J. T. The human initiator is a distinct and abundant element that is precisely positioned in focused core promoters. Genes. Dev. 31, 6–11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eun, C. et al. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana. PLoS ONE 6, e25730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, F. & Axtell, M. J. AGO4 is specifically required for heterochromatic siRNA accumulation at Pol V-dependent loci in Arabidopsis thaliana. Plant J. 90, 37–47 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. He, X.-J. et al. An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 137, 498–508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rowley, M. J., Avrutsky, M. I., Sifuentes, C. J., Pereira, L. & Wierzbicki, A. T. Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing. PLoS Genet 7, e1002120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bies-Etheve, N. et al. RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep. 10, 649–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greenberg, M. V. C. et al. Identification of genes required for de novo DNA methylation in Arabidopsis. Epigenetics 6, 344–354 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, L. et al. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat. Struct. Mol. Biol. 16, 91–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Zhong, X. et al. Domains rearranged methyltransferase3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis. Proc. Natl Acad. Sci. USA 112, 911–916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ausin, I., Mockler, T. C., Chory, J. & Jacobsen, S. E. IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nat. Struct. Mol. Biol. 16, 1325–1327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ausin, I. et al. INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis.Proc. Natl Acad. Sci. USA 109, 8374–8381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, C.-J. et al. IDN2 and its paralogs form a complex required for RNA-directed DNA methylation. PLoS. Genet. 8, e1002693 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Groth, M. et al. SNF2 chromatin remodeler-family proteins FRG1 and -2 are required for RNA-directed DNA methylation. Proc. Natl Acad. Sci. USA 111, 17666–17671 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stroud, H., Greenberg, M. V. C., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han, Y.-F. et al. SUVR2 is involved in transcriptional gene silencing by associating with SNF2-related chromatin-remodeling proteins in Arabidopsis. Cell. Res. 24, 1445–1465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lahmy, S. et al. Evidence for ARGONAUTE4–DNA interactions in RNA-directed DNA methylation in plants. Genes. Dev. 30, 2565–2570 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315, 1587–1590 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Shimada, Y., Mohn, F. & Bühler, M. The RNA-induced transcriptional silencing complex targets chromatin exclusively via interacting with nascent transcripts. Genes. Dev. 30, 2571–2580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Noma, K.-I. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat. Genet. 36, 1174–1180 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Zofall, M. et al. RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335, 96–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Herr, A. J., Jensen, M. B., Dalmay, T. & Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118–120 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Pontier, D. et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes. Dev. 19, 2030–2040 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ream, T. S. et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol. Cell. 33, 192–203 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shen, L., Shao, N., Liu, X. & Nestler, E. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genom. 15, 284 (2014).

    Article  Google Scholar 

  54. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Jacobsen lab for insightful discussion and M. Akhavan for technical assistance. We also thank Life Science Editors for editing assistance. High-throughput sequencing was performed at UCLA BSCRC BioSequencing Core Facility. W.L. is supported by the Philip J. Whitcome Fellowship from the UCLA Molecular Biology Institute and a scholarship from the Chinese Scholarship Council. Z.Z. is supported by a scholarship from the Chinese Scholarship Council. Group of J.Z. is supported by the Thousand Talents Program for Young Scholars and by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2016ZT06S172). This work was supported by the NIH grant GM60398 to S.E.J. and NIH grant R01GM094428 and R01GM52413 to J.C. S.E.J. and J.C. are Investigators of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

W.L., J.H., S.H.D. and S.F. performed the GRO–seq experiments. M.G. performed the ChIP–seq experiments. W.L., J.G.-B., Z.Z. and S.F. performed the small RNA-seq experiments. W.L. and M.G. performed the bioinformatics analysis. W.L. and S.E.J. wrote the manuscript. J.Z., H.Y.K., Z.W. and J.C. assisted in writing the manuscript and discussion.

Corresponding author

Correspondence to Steven E. Jacobsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4.

Life Sciences Reporting Summary

Supplementary Table 1

Summary of sequenced ChIP-seq, GRO-seq, sRNA-seq and published data used in this paper.

Supplementary Table 2

Genomic location of Pol IV/V-co-dependent sites and Pol IV-independent Pol V sites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Duttke, S.H., Hetzel, J. et al. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. Nature Plants 4, 181–188 (2018). https://doi.org/10.1038/s41477-017-0100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0100-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing