Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis

Abstract

UV RESISTANCE LOCUS 8 (UVR8) is an ultraviolet-B (UVB) radiation photoreceptor that mediates light responses in plants. How plant UVR8 acts in response to UVB light is not well understood. Here, we report the identification and characterization of the Arabidopsis WRKY DNA-BINDING PROTEIN 36 (WRKY36) protein. WRKY36 interacts with UVR8 in yeast and Arabidopsis cells and it promotes hypocotyl elongation by inhibiting HY5 transcription. Inhibition of hypocotyl elongation under UVB requires the inhibition of WRKY36. WRKY36 binds to the W-box motif of the HY5 promoter to inhibit its transcription, while nuclear localized UVR8 directly interacts with WRKY36 to inhibit WRKY36–DNA binding both in vitro and in vivo, leading to the release of inhibition of HY5 transcription. These results indicate that WRKY36 is a negative regulator of HY5 and that UVB represses WRKY36 via UVR8 to promote the transcription of HY5 and photomorphogenesis. The UVR8–WRKY36 interaction in the nucleus represents a novel mechanism of early UVR8 signal transduction in Arabidopsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: UVR8 physically interacts with WRKY36.
Fig. 2: UVB promotes the nuclear accumulation of UVR8 as well as formation of the UVR8–WRKY36 complex.
Fig. 3: WRKY36 is involved in UVB-controlled hypocotyl elongation.
Fig. 4: WRKY36 regulates UVB-controlled hypocotyl elongation downstream of UVR8.
Fig. 5: WRKY36 negatively regulates the expression of HY5 downstream of UVR8.
Fig. 6: UVR8 inhibits the DNA-binding activity of WRKY36.

Similar content being viewed by others

References

  1. Favory, J. J. et al. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 28, 591–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jenkins, G. I. Signal transduction in responses to UV-B radiation. Annu. Rev. Plant Biol. 60, 407–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Rizzini, L. et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Jenkins, G. I. Structure and function of the UV-B photoreceptor UVR8. Curr. Opin. Struct. Biol. 29, 52–57 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Tilbrook, K. et al. The UVR8 UV-B photoreceptor: perception, signaling and response. Arab. Book 11, e0164 (2013).

    Article  Google Scholar 

  6. Kaiserli, E. & Jenkins, G. I. UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell. 19, 2662–2673 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yi, C. & Deng, X. W. COP1—from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell. Biol. 15, 618–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Huang, X., Yang, P., Ouyang, X., Chen, L. & Deng, X. W. Photoactivated UVR8–COP1 module determines photomorphogenic UV-B signaling output in Arabidopsis. PLoS Genet. 10, e1004218 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cloix, C. et al. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Proc. Natl Acad. Sci. USA 109, 16366–16370 (2012).

  10. Yin, R., Skvortsova, M. Y., Loubery, S. & Ulm, R. COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor. Proc. Natl Acad. Sci. USA 113, E4415–E4422 (2016).

  11. Qian, C. et al. Dual-source nuclear monomers of UV-B light receptor direct photomorphogenesis in Arabidopsis. Mol. Plant 9, 1671–1674 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Gruber, H. et al. Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc. Natl Acad. Sci. USA 107, 20132–20137 (2010).

  13. Heijde, M. & Ulm, R. Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc. Natl Acad. Sci. USA 110, 1113–1118 (2013).

  14. Jiao, Y., Lau, O. S. & Deng, X. W. Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 8, 217–230 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ulm, R. et al. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc. Natl Acad. Sci. USA 101, 1397–1402 (2004).

  16. Brown, B. A. et al. A UV-B-specific signaling component orchestrates plant UV protection. Proc. Natl Acad. Sci. USA 102, 18225–18230 (2005).

  17. Oravecz, A. et al. CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell. 18, 1975–1990 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown, B. A. & Jenkins, G. I. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol. 146, 576–588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stracke, R. et al. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell. Environ. 33, 88–103 (2010).

    CAS  PubMed  Google Scholar 

  20. Feher, B. et al. Functional interaction of the circadian clock and UV RESISTANCE LOCUS 8-controlled UV-B signaling pathways in Arabidopsis thaliana. Plant J. 67, 37–48 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, X. et al. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell. 24, 4590–4606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown, B. A., Headland, L. R. & Jenkins, G. I. UV-B action spectrum for UVR8-mediated HY5 transcript accumulation in Arabidopsis. Photochem. Photobiol. 85, 1147–1155 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Osterlund, M. T., Hardtke, C. S., Wei, N. & Deng, X. W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Binkert, M. et al. UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter. Plant Cell. 26, 4200–4213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, H. et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322, 1535–1539 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, H. et al. Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Proc. Natl Acad. Sci. USA 110, 17582–17587 (2013).

  27. Liu, Y., Li, X., Li, K., Liu, H. & Lin, C. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genet. 9, e1003861 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ma, D. et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc. Natl Acad. Sci. USA 113, 224–229 (2016).

  29. Pedmale, U. V. et al. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164, 233–245 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Ni, M., Tepperman, J. M. & Quail, P. H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657–667 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Leivar, P. & Quail, P. H. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 16, 19–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Castrillo, G. et al. Speeding cistrans regulation discovery by phylogenomic analyses coupled with screenings of an arrayed library of Arabidopsis transcription factors. PLoS ONE 6, e21524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eulgem, T., Rushton, P. J., Robatzek, S. & Somssich, I. E. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Riechmann, J. L. et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Czechowski, T., Bari, R. P., Stitt, M., Scheible, W. R. & Udvardi, M. K. Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J. Cell. Mol. Biol. 38, 366–379 (2004).

    Article  CAS  Google Scholar 

  36. Wu, D. et al. Structural basis of ultraviolet-B perception by UVR8. Nature 484, 214–219 (2012).

    Article  PubMed  Google Scholar 

  37. Yin, R., Arongaus, A. B., Binkert, M. & Ulm, R. Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis. Plant Cell. 27, 202–213 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kreuzaler, F., Ragg, H., Fautz, E., Kuhn, D. N. & Hahlbrock, K. UV-induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense. Proc. Natl Acad. Sci. USA 80, 2591–2593 (1983).

  39. Sweere, U. et al. Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294, 1108–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Huq, E. et al. PHYTOCHROME-INTERACTING FACTOR 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science 305, 1937–1941 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Quail, P. H. Photosensory perception and signalling in plant cells: new paradigms? Curr. Opin. Cell. Biol. 14, 180–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Al-Sady, B., Kikis, E. A., Monte, E. & Quail, P. H. Mechanistic duality of transcription factor function in phytochrome signaling. Proc. Natl Acad. Sci. USA 105, 2232–2237 (2008).

  43. Choi, G. et al. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401, 610–613 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Ryu, J. S. et al. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell 120, 395–406 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Fankhauser, C. & Chory, J. Light receptor kinases in plants! Curr. Biol. 9, R123–R126 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Q. et al. Photoactivation and inactivation of Arabidopsis cryptochrome 2. Science 354, 343–347 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, Q. et al. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat. Commun. 8, 15234 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Park, E. et al. Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters. Plant J. 72, 537–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, F. et al. Arabidopsis phytochrome A directly targets numerous promoters for individualized modulation of genes in a wide range of pathways. Plant Cell. 26, 1949–1966 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Huang, Y. Shi, R. P. Hellens and Q. Hu for materials and technical assistance. We thank G. A. Gomez for copyediting the manuscript. This work is supported in part by the National Key Research and Development Program of China (2017YFA 0503800), National Natural Science Foundation of China (31730009, 31721001, 31670282 and 31670307) and Strategic Priority Research Program ‘Molecular Mechanism of Plant Growth and Development’ (XDPB04).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and H.L. conceived the project. Y.Y. performed most of the experiments. L.Z., X.G., R.S. and N.S. made some constructs. T.L., X.L. and P.Z. provided materials. K.S. performed some protein expression in E. coli. Y.Y. and H.L. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Hongtao Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary References, Supplementary Figures 1–9 and Supplementary Table 1

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liang, T., Zhang, L. et al. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nature Plants 4, 98–107 (2018). https://doi.org/10.1038/s41477-017-0099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0099-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing