Plant behaviour from human imprints and the cultivation of wild cereals in Holocene Sahara

Article metrics


The human selection of food plants cannot always have been aimed exclusively at isolating the traits typical of domesticated species today. Each phase of global change must have obliged plants and humans to cope with and develop innovative adaptive strategies. Hundreds of thousands of wild cereal seeds from the Holocene ‘green Sahara’ tell a story of cultural trajectories and environmental instability revealing that a complex suite of weediness traits were preferred by both hunter-gatherers and pastoralists. The archaeobotanical record of the Takarkori rockshelter in southwest Libya covering four millennia of human occupation in the central Sahara gives us a unique insight into long-term plant manipulation and cultivation without domestication. The success of a number of millets was rooted in their invasive-opportunistic behaviour, rewarded during their coexistence with people in Africa. These wild plants were selected for features that were precious in the past but pernicious for agriculture today. Reconnecting past practices with modern farming strategies can help us to seek out the best resources for the future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Context of the archaeobotanical record of Takarkori rockshelter.
Fig. 2: Multiplot of calibrated (cal bc) radiocarbon dates of the 30 archaeobotanical samples.
Fig. 3: Spot and mix plant accumulations.
Fig. 4: The archaeobotanical record of plant accumulations from the Takarkori rockshelter is unique in showing so clearly the coexistence of gathering and cultivation of wild cereals.
Fig. 5: Morphometry of ellipticity.


  1. 1.

    Zeder, M. A. Core questions in domestication research. Proc. Natl Acad. Sci. USA 112, 3191–3198 (2015).

  2. 2.

    García-Granero, J. J., Urem-Kotsou, D., Bogaard, A. & Kotsos, S. Cooking plant foods in the northern Aegean: microbotanical evidence from Neolithic Stavroupoli (Thessaloniki, Greece). Quat. Int. (2017).

  3. 3.

    Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 418, 700–707 (2002).

  4. 4.

    Cox, S. in Plant Breeding and Farmer Participation (eds Ceccarelli, E. P. G. S. & Weltzien, E.) 1–26 (FAO, Rome, 2009).

  5. 5.

    Baucom, R. S. & Holt, J. S. Weeds of agricultural importance: bridging the gap between evolutionary ecology and crop and weed science. New Phytol. 184, 741–743 (2009).

  6. 6.

    Kuester, A., Conner, J. K., Culley, T. & Baucom, R. S. How weeds emerge: A taxonomic and trait-based examination using United States data. New Phytol. 202, 1055–1068 (2014).

  7. 7.

    Smith, B. D. Low-level food production. J. Archaeol. Res. 9, 1–43 (2001).

  8. 8.

    Weiss, E., Kislev, M. & Hartmann, A. Autonomous cultivation before domestication. Science 312, 1608–1610 (2006).

  9. 9.

    Willcox, G., Fornite, S. & Herveux, L. Early Holocene cultivation before domestication in northern Syria. Veg. Hist. Archaeobot. 17, 313–325 (2008).

  10. 10.

    Murphy, D. J. People, Plants & Genes: The Story Of Crops And Humanity. (Oxford Univ. Press, Oxford, 2007).

  11. 11.

    Fuller, D. Q. et al. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl Acad. Sci. USA 111, 6147–6152 (2014).

  12. 12.

    Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Genet. 14, 840–852 (2013).

  13. 13.

    White, C. E. & Makarewicz, C. A. Harvesting practices and early Neolithic barley cultivation at el-Hemmeh, Jordan. Veg. Hist. Archaeobot. 21, 85–94 (2012).

  14. 14.

    Fuller, D. Q. & Allaby, R. G. Seed dispersal and crop domestication: shattering, germination, and seasonality in evolution under cultivation. Annu. Plant Rev. 38, 238–295 (2009).

  15. 15.

    Fuller, D. Q., Allaby, R. G. & Stevens, C. Domestication as innovation: the entanglement of techniques, technology and chance in the domestication of cereal crops. World Archaeol. 42, 13–28 (2010).

  16. 16.

    Purugganan, M. D. & Fuller, D. Q. The nature of selection during domestication. Nature 457, 843–848 (2009).

  17. 17.

    Willcox, G., Nesbitt, M. & Bittmann, F. From collecting to cultivation: transitions to a production economy in the Near East. Veget. Hist. Archaeobot. 21, 81–83 (2012).

  18. 18.

    Kislev, M. E., Weiss, E. & Hartmann, A. Impetus for sowing and the beginning of agriculture: ground collecting of wild cereals. Proc. Natl Acad. Sci. USA 101, 2692–2695 (2004).

  19. 19.

    Biagetti, S. & di Lernia, S. Holocene deposits of Saharan rock shelters: the case of Takarkori and other sites from the Tadrart Acacus Mountains (Southwest Libya). Afr. Archaeol. Rev. 30, 305–338 (2013).

  20. 20.

    Cremaschi, M. et al. Takarkori rock shelter (SW Libya): an archive of Holocene climate and environmental changes in the central Sahara. Quat. Sci. Rev. 101, 36–60 (2014).

  21. 21.

    di Lernia, S. & Tafuri, M. A. Persistent deathplaces and mobile landmarks: The Holocene mortuary and isotopic record from Wadi Takarkori (SW Libya). J. Anthropol. Archaeol. 32, 1–15 (2013).

  22. 22.

    Mercuri, A. M. Plant exploitation and ethnopalynological evidence from the Wadi Teshuinat area (Tadrart Acacus, Libyan Sahara). J. Archaeol. Sci. 35, 1619–1642 (2008).

  23. 23.

    di Lernia, S. Dismantling dung: delayed use of food resources among Early Holocene foragers of the Libyan Sahara. J. Anthropol. Archaeol. 20, 408–441 (2001).

  24. 24.

    di Lernia, S. et al. Colour in context: pigments and other coloured residues from the Early-Middle Holocene site of Takarkori (SW Libya). Archaeol. Anthr. Sci. 8, 381–402 (2016).

  25. 25.

    di Lernia, S., Massamba N'siala, I. & Mercuri, A. M. Saharan prehistoric basketry. Archaeological and archaeobotanical analysis of the early-middle Holocene assemblage from Takarkori (Acacus Mts., SW Libya). J. Archaeol. Sci. 39, 1837–1853 (2012).

  26. 26.

    Dunne, J. et al. First dairying in green Saharan Africa in the fifth millennium BC. Nature 486, 390–394 (2012).

  27. 27.

    Dunne, J., Mercuri, A. M., Evershed, R. P., Bruni, S. & di Lernia, S. Earliest direct evidence of plant processing in prehistoric Saharan pottery. Nat. Plants 3, 16194 (2016).

  28. 28.

    Ozenda, P. Flore Et Végétation Du Sahara (Centre National de la Recherche Scientifique, Paris, 2000).

  29. 29.

    Mercuri, A. M. Human influence, plant landscape evolution and climate inferences from the archaeobotanical records of the Wadi Teshuinat area (Libyan Sahara). J. Arid. Environ. 72, 1950–1967 (2008).

  30. 30.

    Song, J., Zhao, Z. & Fuller, D. Q. The archaeobotanical significance of immature millet grains: an experimental case study of Chinese millet crop processing. Veg. Hist. Archaeobot. 22, 141–152 (2013).

  31. 31.

    Moreno-Larrazabal, A., Teira-Brión, A., Sopelana-Salcedo, I., Arranz-Otaegui, A. & Zapata, L. Ethnobotany of millet cultivation in the north of the Iberian Peninsula. Veg. Hist. Archaeobot. 24, 541–554 (2015).

  32. 32.

    Kuijt, I. & Finlayson, B. Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley. Proc. Natl. Acad. Sci. USA 106, 10966–10970 (2009).

  33. 33.

    Cremaschi, M. in Droughts, Food and Culture (ed. Hassan, F. A.) 65–81 (Springer, New York, 2002).

  34. 34.

    Kuper, R. & Kröpelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa's evolution. Science 313, 803–807 (2006).

  35. 35.

    Castelletti, L. et al. in The Uan Afuda Cave Hunter-gatherer Societes of Central Sahara (ed. di Lernia, S.) 131–148 (AZA Monographs 1, All’Insegna del Giglio, Firenze, 1999).

  36. 36.

    Cremaschi, M. & Zerboni, A. in Landscape and Societies, Selected Cases (eds Martini, I. P. & Chesworth, W.) 67–89 (Springer, Dordrecht, 2011).

  37. 37.

    Wasylikowa, K., & Dahlberg, J. in The Exploitation of Plant Resources in Ancient Africa (ed. Van der Veen, M.) 11–31 (Springer, New York, 1999).

  38. 38.

    Fuller, D. Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 100, 903–924 (2007).

  39. 39.

    De Wet, J. M. J. Cereals for the semi-arid tropics. In Proc. Plant Domestication by Induced Mutation (ed. Ridgman, W. J.) 79–88 (International Atomic Energy Agency, 1986).

  40. 40.

    Walker, S., Wu, H. & Bell, K. Emergence and seed persistence of Echinochloa colona, Urochloa panicoides and Hibiscus trionum in the sub-tropical environment of north-eastern Australia. Plant Prot. Q 25, 127 (2010).

  41. 41.

    Clarke, J. et al. Climatic changes and social transformations in the Near East and North Africa during the ‘long’ 4th millennium BC: a comparative study of environmental and archaeological evidence. Quat. Sci. Rev. 136, 96–121 (2016).

  42. 42.

    Khedr, A., Serag, M., Shaaban, H. & Abogadallah, G. Differential responses of aquatic and aerobic forms of Echinochloa crus-galli (L.) Beauv. and E. colona (L.) Link. by morpho-physiological and molecular analysis. Environ. Earth Ecol. 1, 81–93 (2017).

  43. 43.

    Andrew, S. M., Totland, Ø. & Moe, S. R. Invasion of the cosmopolitan species Echinochloa colona into herbaceous vegetation of a tropical wetland system. Ecol. Res. 29, 969 (2014).

  44. 44.

    Zedler, J. B. & Kercher, S. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit. Rev. Plant Sci. 23, 431–452 (2004).

  45. 45.

    Smith, B. D. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Phil. Trans. R. Soc. B 366, 836–848 (2011).

  46. 46.

    Abbo, S., Gopher, A., Rubin, B. & Lev-Yadun, S. On the origin of Near Eastern founder crops and the ‘dump-heap hypothesis’. Genet. Resour. Crop. Ev. 52, 491–495 (2005).

  47. 47.

    Fuller, D. Q. & Hildebrand, E. Domesticating Plants in Africa (eds Mitchell, P. & Lane, P.) 507–525 (Oxford Univ. Press, Oxford, 2013).

  48. 48.

    D'Andrea, A. C., Klee, M. & Casey, J. Archaeobotanical evidence for pearl millet (Pennisetum glaucum) in sub-Saharan West Africa. Antiquity 75, 341–348 (2001).

  49. 49.

    Wu, W. et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat. Plants 3, 17064 (2017).

  50. 50.

    González, A. T. & Morton, C. M. Molecular and morphological phylogenetic analysis of Brachiaria and Urochloa (Poaceae). Mol. Phylogenet. Evol. 37, 36–44 (2005).

  51. 51.

    Yang, X. et al. Barnyard grasses were processed with rice around 10000 years ago. Sci. Rep. 5, 16251 (2015).

  52. 52.

    Milla, R., Osborne, C. P., Turcotte, M. M. & Violle, C. Plant domestication through an ecological lens. Trends Ecol. Evol. 30, 463–469 (2015).

  53. 53.

    Vigueira, C. C., Olsen, K. M. & Caicedo, A. L. The red queen in the corn: agricultural weeds as models of rapid adaptive evolution. Heredity 110, 303–311 (2013).

  54. 54.

    Gurevitch, J., Scheiner, S. M. & Fox, G. A. The Ecology of Plants 258–259 (Sinauer, Sunderland, MA, 2002).

  55. 55.

    Kohli, R. K., Batish, D. R., & Singh, H. P. in Handbook of Sustainable Weed Management (eds Singh, H. P. et al.) 1–19 (Haworth, New York, 2006).

  56. 56.

    Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).

  57. 57.

    Aldrich, R. J. Weed-Crop Ecology: Principles in Weed Management (New Breton, North Scituate, MA, 1984).

  58. 58.

    Cremaschi, M. & di Lernia, S. Holocene climatic changes and cultural dynamics in the Libyan Sahara. Afr. Archaeol. Rev. 16, 211–238 (1999).

  59. 59.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

  60. 60.

    Wasylikowa, K. Holocene flora of the Tadrart Acacus area, SW Libya, based on plant macrofossils from Uan Muhuggiag and Ti-n-Torha/Two Caves archaeological sites. Origini 16, 125–159 (1992).

  61. 61.

    Wasylikowa, K. Exploitation of wild plants by prehistoric peoples in the Sahara. Würzburger Geogr. Arbeit. 84, 247–262 (1992).

  62. 62.

    Mercuri, A. M. in UanTabu in the Settlement History of the Libyan Sahara, Arid Zone Archaeology, Monographs 2 (ed. Garcea, E. A. A.) 161–188 (All’Insegna del Giglio, Firenze, 2001).

  63. 63.

    Olmi, L. et al. Cereali selvatici nel Tadrart Acacus—Sahara Centrale, durante l'Olocene iniziale e l’Olocene medio. Atti Soc. Nat. Mat. Modena 137, 411–430 (2007).

  64. 64.

    Clayton, W. D. & Renvoize, S. A. Flora of Tropical East Africa: Gramineae (Part 3) (ed. Polhill, R. M.) 451–898 (East African Governments, Balkema, Rotterdam, 1982).

  65. 65.

    Sheriff, A. S. & Siddiqi, M. A. in Flora of Libya (ed. El-Gadi, A. A.) (Al Faateh Univ., Tripoli, 1988).

  66. 66.

    Boulos, L. Flora of Egypt: Volume four: Monocotyledons (Alismataceae–Orchidaceae) (Al Hadara, Cairo, 2005).

  67. 67.

    Lansdown, R. V. Echinochloa colona (IUCN, 2013);

  68. 68.

    Hilu, K. W. Evidence for RAPD markers in the evolution of Echinochloa millets (Poaceae). Plant Syst. Evol. 189, 247–257 (1994).

  69. 69.

    Sood, S. et al. Barnyard millet—a potential food and feed crop of future. Plant Breed. 134, 135–147 (2015).

  70. 70.

    Yamaguchi, H., Utano, A. Y. A., Yasuda, K., Yano, A. & Soejima, A. A molecular phylogeny of wild and cultivated Echinochloa in East Asia inferred from non-coding region sequences of trnT-L-F. Weed Biol. Manag. 5, 210–218 (2005).

  71. 71.

    Carman, J. G., Jamison, M., Elliott, E., Dwivedi, K. K. & Naumova, T. N. Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in sorghum ovules. Plant Biol. 11, 9 (2011).

  72. 72.

    Olmi, L. et al. in Windows on the African Past: Contemporary Approaches to African Archaeobotany 175–184 (Africa Magna, Frankfurt, 2012).

  73. 73.

    Fornaciari, R., Fornaciari, S., Francia, E., Mercuri, A. M. & Arru, L. Panicum spikelets from the Early Holocene Takarkori rockshelter (SW Libya): archaeo-molecular and -botanical investigations. Plant Biosyst. 152, 1–13 (2018).

  74. 74.

    Martinoli, D. & Nesbitt, M. Plant stores at pottery Neolithic Höyücek, Southwest Turkey. Anatol. Stud. 53, 17–32 (2003).

Download references


This research is part of the activity of The Archaeological Mission in the Sahara, Sapienza University of Rome. Funds have been granted by Sapienza University of Rome (Grandi Scavi di Ateneo) and by the Italian Minister of Foreign Affairs (DGSP) entrusted to S.d.L. Libyan colleagues of the Department of Archaeology in Tripoli and Ghat are thanked. Funds for morphometrical and genetic analyses were provided by the project ‘SELCE—SELvaticiCEreali: il futuro nella risposta delle piante ai cambiamenti climatici’, sect. Scientific and Technological Research (Sime n.2015.0033), funded by the FCRMO-Fondazione Cassa di Risparmio di Modena, directed by A.M.M. We thank E. Milburn and J. Dunne who helped to clarify some expressions in English.

Author information

S.d.L. and A.M.M. conceived and planned the project. A.M.M. and S.d.L. wrote the paper. A.M.M. studied the archaeobotanical record and S.d.L. the stratigraphic and archaeological context. R.F. performed morphometry and data analysis. M.G. performed the GIS analysis. S.V. did the entomological study. S.d.L. designed and directed the excavations and field sampling. All authors read and approved the final manuscript.

Correspondence to Anna Maria Mercuri or Savino di Lernia.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1 and 2, Supplementary Data, Supplementary References.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mercuri, A.M., Fornaciari, R., Gallinaro, M. et al. Plant behaviour from human imprints and the cultivation of wild cereals in Holocene Sahara. Nature Plants 4, 71–81 (2018) doi:10.1038/s41477-017-0098-1

Download citation

Further reading