Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of auxin-induced callus formation by bZIP59–LBD complex in Arabidopsis regeneration

Abstract

Induction of pluripotent cells termed callus by auxin represents a typical cell fate change required for plant in vitro regeneration; however, the molecular control of auxin-induced callus formation is largely elusive. We previously identified four Arabidopsis auxin-inducible Lateral Organ Boundaries Domain (LBD) transcription factors that govern callus formation. Here, we report that Arabidopsis basic region/leucine zipper motif 59 (AtbZIP59) transcription factor forms complexes with LBDs to direct auxin-induced callus formation. We show that auxin stabilizes AtbZIP59 and enhances its interaction with LBD, and that disruption of AtbZIP59 dampens auxin-induced callus formation whereas overexpression of AtbZIP59 triggers autonomous callus formation. AtbZIP59–LBD16 directly targets a FAD-binding Berberine (FAD-BD) gene and promotes its transcription, which contributes to callus formation. These findings define the AtbZIP59–LBD complex as a critical regulator of auxin-induced cell fate change during callus formation, which provides a new insight into the molecular regulation of plant regeneration and possible developmental programs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AtbZIP59 physically interacts with auxin-inducible LBDs.
Fig. 2: AtbZIP59 mediates auxin-inducible callus formation.
Fig. 3: CIM stabilizes AtbZIP59 and enhances its interaction with LBD16.
Fig. 4: AtbZIP59 and LBD16 act synergistically in directing callus formation.
Fig. 5: FAD-BD is targeted by the AtbZIP59–LBD16 complex.

Similar content being viewed by others

References

  1. Birnbaum, K. D. & Sanchez Alvarado, A. Slicing across kingdoms: regeneration in plants and animals. Cell 132, 697–710 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sugimoto, K., Gordon, S. P. & Meyerowitz, E. M. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell. Biol. 21, 212–218 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Skoog, F. & Miller, C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 54, 118–130 (1957).

    Google Scholar 

  4. Valvekens, D., Montagu, M. V. & Van Lijsebettens, M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl Acad. Sci. USA 85, 5536–5540 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gordon, S. P. et al. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134, 3539–3548 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Chandler, J. W. Founder cell specification. Trends Plant Sci. 16, 607–613 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Ahmad, P. et al. Role of transgenic plants in agriculture and biopharming. Biotechnol. Adv. 30, 524–540 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Viacheslavova, A. O. et al. Expression of heterologous genes in plant systems: new possibilities. Genetika 48, 1245–1259 (2012).

    CAS  PubMed  Google Scholar 

  9. Atta, R. et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 57, 626–644 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Sugimoto, K., Jiao, Y. & Meyerowitz, E. M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell. 18, 463–471 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Che, P., Lall, S. & Howell, S. H. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226, 1183–1194 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Laplaze, L. et al. GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J. Exp. Bot. 56, 2433–2442 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Okushima, Y., Fukaki, H., Onoda, M., Theologis, A. & Tasaka, M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell. 19, 118–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, H. W., Kim, N. Y., Lee, D. J. & Kim, J. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol. 151, 1377–1389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan, M., Xu, C., Xu, K. & Hu, Y. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell. Res. 22, 1169–1180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosspopoff, O. et al. Direct conversion of root primordium into shoot meristem relies on timing of stem cell niche development. Development 144, 1187–1200 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Iwase, A. et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr. Biol. 21, 508–514 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Ikeuchi, M. et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol. 175, 1158–1174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jakoby, M. et al. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Deppmann, C. D. et al. Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs. Nucleic Acids Res. 32, 3435–3445 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vinson, C. R., Sigler, P. B. & McKnight, S. L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246, 911–916 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Ellenberger, T. E., Brandl, C. J., Struhl, K. & Harrison, S. C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71, 1223–1237 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Tsugama, D., Liu, S. & Takano, T. Analysis of functions of VIP1 and its close homologs in osmosensory responses of Arabidopsis thaliana. PLoS ONE 9, e103930 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Van Oosten, M. J., Sharkhuu, A., Batelli, G., Bressan, R. A. & Maggio, A. The Arabidopsis thalian a mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Mol. Biol. 83, 405–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Walter, M. et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Daniel, B. et al. Oxidation of monolignols by members of the berberine bridge enzyme family suggests a role in plant cell wall metabolism. J. Biol. Chem. 290, 18770–18781 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, H. W., Kim, M. J., Kim, N. Y., Lee, S. H. & Kim, J. LBD18 acts as a transcriptional activator that directly binds to the EXPANSIN14 promoter in promoting lateral root emergence of Arabidopsis. Plant J. 73, 212–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, K. et al. A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs. Genomics 100, 116–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Heyman, J. et al. The heterodimeric transcription factor complex ERF115–PAT1 grants regeneration competence. Nat. Plants 2, 16165 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Zhong, L. P. et al. Overexpression of insulin-like growth factor binding protein 3 in oral squamous cell carcinoma. Oncol. Rep. 20, 1441–1447 (2008).

    CAS  PubMed  Google Scholar 

  31. Rizzino, A. & Wuebben, E. L. Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim. Biophys. Acta 1859, 780–791 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Casimiro, I. et al. Dissecting Arabidopsis lateral root development. Trends Plant Sci. 8, 165–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Casimiro, I. et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell. 13, 843–852 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aida, M. et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Haecker, A. et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Hu, Y., Xie, Q. & Chua, N. H. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell. 15, 1951–1961 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chinnusamy, V. et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes. Dev. 17, 1043–1054 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Funakoshi, M. & Hochstrasser, M. Small epitope-linker modules for PCR-based C-terminal tagging in Saccharomyces cerevisiae. Yeast 26, 185–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Robinson, C. R. & Sauer, R. T. Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc. Natl Acad. Sci. USA 95, 5929–5934 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Bharti, K. et al. Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum. Plant J. 22, 355–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Voinnet, O., Rivas, S., Mestre, P. & Baulcombe, D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, J. H. & Kende, H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc. Natl Acad. Sci. USA 101, 13374–13379 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bowler, C. et al. Chromatin techniques for plant cells. Plant J. 39, 776–789 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, T. Q. et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell. 29, 1073–1087 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Lin, X. L. et al. An Arabidopsis SUMO E3 ligase, SIZ1, negatively regulates photomorphogenesis by promoting COP1 activity. PLoS Genet. 12, e1006016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gallie, D. R. & Kado, C. I. A translational enhancer derived from tobacco mosaic virus is functionally equivalent to a Shine-Dalgarno sequence. Proc. Natl Acad. Sci. USA 86, 129–132 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gallie, D. R., Lucas, W. J. & Walbot, V. Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell. 1, 301–311 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Scheres, J. Haseloff, N.-H. Chua, J.-W. Wang and J. Jin for providing the seeds and constructs used in this study. We thank J. M. Alonso (North Carolina State University) for critical comments on the manuscript. We acknowledge K. Yang for help in preparing some of the constructs for the co-IP experiment. This work was supported by the National Natural Science Foundation of China (grant no. 31230009 and grant no. 31771632), the Ministry of Science and Technology of China (grant no. 2013CB967300) and the Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDPB0403).

Author information

Authors and Affiliations

Authors

Contributions

Y.H. conceived the project; C.X. and Y.H. designed the experiments; C.X., H.C., H.W. and W.X. performed the experiments; Q.Z., E.X., S.Z., R.Y. and D.Y. contributed to the generation of some constructs; C.X. and Y.H. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Yuxin Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Table 1

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Cao, H., Zhang, Q. et al. Control of auxin-induced callus formation by bZIP59–LBD complex in Arabidopsis regeneration. Nature Plants 4, 108–115 (2018). https://doi.org/10.1038/s41477-017-0095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0095-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing