Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer

An Author Correction to this article was published on 29 May 2018

This article has been updated


Upon transition of plants from darkness to light the initiation of photosynthetic linear electron transfer (LET) from H2O to NADP+ precedes the activation of CO2 fixation, creating a lag period where cyclic electron transfer (CET) around photosystem I (PSI) has an important protective role. CET generates ΔpH without net reduced NADPH formation, preventing overreduction of PSI via regulation of the cytochrome b 6 f (cytb 6 f) complex and protecting PSII from overexcitation by inducing non-photochemical quenching. The dark-to-light transition also provokes increased phosphorylation of light-harvesting complex II (LHCII). However, the relationship between LHCII phosphorylation and regulation of the LET/CET balance is not understood. Here, we show that the dark-to-light changes in LHCII phosphorylation profoundly alter thylakoid membrane architecture and the macromolecular organization of the photosynthetic complexes, without significantly affecting the antenna size of either photosystem. The grana diameter and number of membrane layers per grana are decreased in the light while the number of grana per chloroplast is increased, creating a larger contact area between grana and stromal lamellae. We show that these changes in thylakoid stacking regulate the balance between LET and CET pathways. Smaller grana promote more efficient LET by reducing the diffusion distance for the mobile electron carriers plastoquinone and plastocyanin, whereas larger grana enhance the partition of the granal and stromal lamellae plastoquinone pools, enhancing the efficiency of CET and thus photoprotection by non-photochemical quenching.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biochemical and spectroscopic analysis of dark- and growth light-adapted thylakoids.
Fig. 2: Macromolecular organization of grana thylakoids.
Fig. 3: Macromolecular organization of stromal lamellae thylakoids.
Fig. 4: Dimerization of PSI–LHCI supercomplexes in stromal lamellae thylakoids.
Fig. 5: Membrane architectural changes.
Fig. 6: Changes in electron transfer and photoprotection.
Fig. 7: Schematic model of the influence of grana stacking on the balance between LET and CET.

Change history

  • 29 May 2018

    In the version of this Article originally published, the authors incorrectly labelled the timescale in Fig. 6b as milliseconds (ms) on the x axis and the indicated half-life values; the correct units are microseconds (μs). The figure has now been amended in all versions of the Article.


  1. Horton, P. in Photosynthetic Mechanisms and the Environment (eds Barber, J. & Baker, N. R.) 135–187 (Elsevier, Amsterdam, 1985).

  2. Robinson, S. P., Walker, D. A. The control of 3-phosphoglycerate reduction in isolated chloroplasts by the concentrations of ATP, ADP and 3-phosphoglycerate. Biochim. Biophys. Acta 545, 528–536 (1979).

    Article  PubMed  CAS  Google Scholar 

  3. Slovacek, R. E., Crowther, D. & Hind, G. Relative activities of linear and cyclic electron flows during chloroplast CO2 fixation. Biochim. Biophys. Acta 592, 495–505 (1980).

    Article  PubMed  CAS  Google Scholar 

  4. Joliot, P. & Joliot, A. Quantification of cyclic and linear flows in plants. Proc. Natl Acad. Sci. USA 102, 4913–4918 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yamori, W. & Shikanai, T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu. Rev. Plant Biol. 67, 81–106 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. Johnson, G. N. Physiology of PSI cyclic electron transport in higher plants. Biochim. Biophys. Acta 1807, 384–389 (2011).

    Article  PubMed  CAS  Google Scholar 

  7. Soursa, M. et al. Proton gradient regulation 5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24, 2394–2948 (2012).

    Google Scholar 

  8. Munekage, Y. et al. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429, 579–582 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Herte, A. P. et al. PGRL1 is the elusive ferredoxin–plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell. 49, 511–523 (2013).

    Article  CAS  Google Scholar 

  10. Avenson, T. J., Cruz, J. A., Kanazawa, A. & Kramer, D. M. Regulating the proton budget of plant photosynthesis. Proc. Natl Acad. Sci. USA 102, 9709–9713 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Strand, D., Fisher, N. & Kramer, D. M. The higher plant plastid NAD(P)H dehydrogenase-like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. J. Biol. Chem. 292, 11850–11860 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Yamori, W., Shikanai, T. & Makino, A. Photosystem I cyclic electron ow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Sci. Rep. 5, 13908 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Iwai, M. et al. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464, 1210–1213 (2010).

    Article  PubMed  CAS  Google Scholar 

  14. Takahashi, H., Clowez, S., Wollman, F. A., Vallon, O. & Rappaport, F. Cyclic electron flow is redox-controlled but independent of state transition. Nat. Commun. 4, 1954 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Joliot, P., Lavergne, J. & Beal, D. Plastoquinone compartmentation in chloroplasts. I. Evidence for domains with different rates of photo-reduction. Biochim. Biophys. Acta 1101, 1–12 (1992).

    Article  CAS  Google Scholar 

  16. Dumas, L., Chazaux, M., Peltier, G., Johnson, X. & Alric, J. Cytochrome b 6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow. Photosynt. Res. 29, 307–320 (2016).

  17. Puthiyaveeti, S., van Oort, B. & Kirchhoff, H. Surface charge dynamics in photosynthetic membranes and the structural consequences. Nat. Plants 3, 17020 (2017).

    Article  CAS  Google Scholar 

  18. Bellafiore, S., Barneche, F., Peltier, G. & Rochaix, J. D. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892–895 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. Bonardi, V. et al. Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437, 1179–1182 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Pribil, M., Pesaresi, P., Hertle, A., Barbato, R. & Leister, D. Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol. 8, e1000288 (2010).

  21. Samol, I. et al. Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis. Plant Cell 24, 2596–2609 (2012).

  22. Fristedt, R. et al. Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. Plant Cell 21, 3950–3964 (2009).

  23. Armbruster, U. et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25, 2661–2678 (2013).

  24. Rozak, P. R., Seiser, R. M., Wacholtz, W. F. & Wise, R. R. Rapid, reversible alterations in spinach thylakoid appression upon changes in light intensity. Plant Cell Environ. 25, 421–429 (2002).

  25. Anderson, J. M., Horton, P., Kim, E.-H. & Chow, W. S. Towards elucidation of dynamic structural changes of plant thylakoid architecture. Phil. Trans. R. Soc. Lond. B 367, 3515–3524 (2012).

  26. Rintamaki, E. et al. Phosphorylation of light-harvesting complex II and photosystem II core proteins shows different irradiance-dependent regulation in vivo. J. Biol. Chem. 272, 30476–30482 (1997).

  27. Ruban, A. V. & Johnson, M. P. Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth. Res. 99, 173–183 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. Fristedt, R., Granath, P. & Vener, A. V. A protein phosphorylation threshold for functional stacking of plant photosynthetic membranes. PLoS ONE 5, e10963 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Benson, S. L. et al. An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis. Nat. Plants 1, 15176 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Mekala, N. R., Soursa, M., Rantala, M., Aro, E. M. & Tikkanen, M. Plants actively avoid state transitions upon changes in light intensity: role of light-harvesting complex II protein dephosphorylation in high light. Plant Phys. 168, 721–734 (2015).

    Article  CAS  Google Scholar 

  31. Wientjes, E., van Amerongen, H. & Croce, R. LHCII is an antenna of both photosystems after long-term acclimation. Biochim. Biophys. Acta 1827, 420–426 (2013).

    Article  PubMed  CAS  Google Scholar 

  32. Kyle, D. J., Staehelin, L. A. & Arntzen, C. J. Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. Arch. Biochem. Biophys. 222, 527–541 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. Grieco, M., Suorsa, M., Jajoo, A., Tikkanen, M. & Aro, E. M. Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery—including both photosystems II and I. Biochim. Biophys. Acta 1847, 607–619 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Sznee, K. et al. Jumping mode atomic force microscopy on grana membranes from spinach. J. Biol. Chem. 286, 39164–39171 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Johnson, M. P., Vasilev, C., Olsen, J. D. & Hunter, C. N. Nanodomains of cytochrome b 6 f and photosystem II complexes in spinach grana thylakoid membranes. Plant Cell 26, 3051–3061 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Phuthong, W. et al. The use of contact mode atomic force microscopy in aqueous medium for structural analysis of spinach photosynthetic complexes. Plant Physiol. 169, 1318–1332 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Su, X. et al. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science 357, 815–820 (2017).

    Article  PubMed  CAS  Google Scholar 

  38. Stroebel, D., Choquet, Y., Popot, J.-L. & Picot, D. An atypical haem in the cytochrome b 6 f complex. Nature 426, 413–418 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. Qin, X., Suga, M., Kuang, T. & Shen, J. R. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348, 989–995 (2015).

    Article  PubMed  CAS  Google Scholar 

  40. MacGregor-Chatwin, C. et al. Lateral segregation of photosystem I in cyanobacterial thylakoids. Plant Cell 29, 1119–1136 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fotiadis, D. et al. Surface analysis of the photosystem I complex by electron and atomic force microscopy. J. Mol. Biol. 283, 83–94 (1998).

    Article  PubMed  CAS  Google Scholar 

  42. Zhou, A. et al. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. Elife 4, e10180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Semchonok, D. A., Li, M., Bruce, B. D., Oostergetel, G. T. & Boekema, E. J. Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. Biochim. Biophys. Acta 1857, 1619–1626 (2016).

    Article  PubMed  CAS  Google Scholar 

  44. Sathish Yadav, K. N. et al. Supercomplexes of plant photosystem I with cytochrome b 6 f, light-harvesting complex II and NDH. Biochim. Biophys. Acta 1858, 12–20 (2016).

    Article  CAS  Google Scholar 

  45. Gustafsson, M. G. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 9, 4957–4970 (2008).

    Article  CAS  Google Scholar 

  46. Kirchhoff, H. et al. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl Acad. Sci. USA 108, 20248–20253 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Haehnel, W. Photosynthetic electron transport in higher plants. Annu. Rev. Plant Physiol. 35, 659–693 (1984).

    Article  CAS  Google Scholar 

  48. Joliot, P. & Johnson, G. Regulation of cyclic and linear electron flow in higher plants. Proc. Natl Acad. Sci. USA 108, 13317–13322 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ruban, A. V., & Murchie, E. H. Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. Biochim. Biophys. Acta 1817, 977–982 (2012).

    Article  PubMed  CAS  Google Scholar 

  50. Tikkanen, M., Grieco, M., Kangasjärvi, S. & Aro, E. M. Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol. 152, 723–735 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kouril, R. et al. Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry 44, 10935–10940 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. Bell, A. J., Frankel, L. K. & Bricker, T. M. High yield non-detergent isolation of photosystem I-light harvesting chlorophyll II membranes from spinach thylakoids. J. Biol. Chem. 290, 18429–18437 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Bos, I. et al. Multiple LHCII antennae can transfer energy efficiently to a single Photosystem I. Biochim. Biophys. Acta 1858, 371–378 (2017).

    Article  PubMed  CAS  Google Scholar 

  54. Belgio, E. et al. Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps. Nat. Commun. 5, 4433 (2014).

  55. Johnson, M. P. et al. Photoprotective energy dissipation involves the reorganization of photosystem II light harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23, 1468–1479 (2011).

  56. Belgio, E., Ungerer, P. & Ruban, A. V. Light harvesting superstructures of green plant chloroplasts lacking photosystems. Plant Cell Environ. 38, 2035–2047 (2015).

  57. Furbank, R. T., & Horton, P. Regulation of photosynthesis in isolated barley protoplasts: the contribution of cyclic photophosphorylation. Biochim. Biophys. Acta 894, 332–338 (1987).

  58. Miyake, C., Miyata, M., Shinzaki, Y. & Tomizawa, K. CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant Cell Physiol. 46, 629–637 (2005).

  59. Albertsson, P. A., Andreasson, E., Stefansson, H. & Wollenberger, L. Fractionation of the thylakoid membrane. Methods Enzymol. 228, 469–482 (1994).

    Article  CAS  Google Scholar 

  60. Melis, A. Kinetic analysis of P700 photoconversion: effect of secondary electron donation and plastocyanin inhibition. Arch. Biochem. Biophys. 217, 536–545 (1982).

  61. Sanderson, D., Anderson, L. & Gross, E. Determination of the redox potential and diffusion coefficient of the protein plastocyanin using optically transparent filar electrodes. Biochim. Biophys. Acta 852, 269–278 (1987).

    Article  Google Scholar 

  62. Blackwell, M. F., Gibas, C., Gygax, S., Roman, D. & Wagner, B. The plastoquinone diffusion coefficient in chloroplasts and its mechanistic implications. Biochim. Biophys. Acta 1183, 533–543 (1994).

    Article  CAS  Google Scholar 

  63. Danielsson, R., Albertsson, P. A., Mamedov, F. & Styring, S. Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. Biochim. Biophys. Acta 1608, 53–61 (2004).

    Article  PubMed  CAS  Google Scholar 

  64. Pribil, M., Labs, M. & Leister, D. Structure and dynamics of thylakoids in land plants. J. Exp. Bot. 5, 1955–1972 (2014).

    Article  CAS  Google Scholar 

Download references


We wish to thank P. Horton (University of Sheffield) and F.-A. Wollman (CNRS, Paris) for fruitful discussions on the manuscript. We also thank J. Walker (University of Cambridge) for providing samples of the bovine ATP synthase complex, E. Murchie (University of Nottingham) for loan of the Dual-PAM and C. Hill (University of Sheffield) for assistance with the electron microscopy. M.P.J. acknowledges funding from the Biotechnology and Biological Sciences Research Council (UK) grant BB/M000265/1, the Leverhulme Trust grant RPG-2016-161, the Krebs Institute, the Grantham Centre for Sustainable Futures and the Kirkwood Memorial Fund. C.N.H. acknowledges the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001035. PARC’s role was to partially fund the Multimode VIII AFM system and to provide partial support for C.N.H. The SIM imaging was performed at the University of Sheffield Wolfson Light Microscopy Facility and was partly funded by MRC Grant MR/K015753/1.

Author information

Authors and Affiliations



W.W., C.M.C. and M.J. performed the purification of membranes and characterized them by AFM. W.W. and M.J. performed the spectroscopy experiments. W.W. performed the electron microscopy experiments. W.W. performed the AFM, electron microscopy and spectroscopy data analysis, figure preparation and Monte Carlo simulations. G.E.M. assisted with the modelling. S.F.H.B. performed the three-dimensional SIM experiments and data analysis. X.H. performed the AFM experiments on purified ATP synthase. J.H. provided advice and support to the AFM experiments. The work was conceived and written by M.P.J. and C.N.H. All authors discussed the results and commented upon the manuscript.

Corresponding author

Correspondence to Matthew P. Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5 and Supplementary Tables 1–3

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, W.H.J., MacGregor-Chatwin, C., Barnett, S.F.H. et al. Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nature Plants 4, 116–127 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing