Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Elevation of soybean seed oil content through selection for seed coat shininess

Abstract

Many leguminous species have adapted their seed coat with a layer of powdery bloom that contains hazardous allergens and makes the seeds less visible, offering duel protection against potential predators1. Nevertheless, a shiny seed surface without bloom is desirable for human consumption and health, and is targeted for selection under domestication. Here we show that seed coat bloom in wild soybeans is mainly controlled by Bloom1 (B1), which encodes a transmembrane transporter-like protein for biosynthesis of the bloom in pod endocarp. The transition from the ‘bloom’ to ‘no-bloom’ phenotypes is associated with artificial selection of a nucleotide mutation that naturally occurred in the coding region of B1 during soybean domestication. Interestingly, this mutation not only ‘shined’ the seed surface, but also elevated seed oil content in domesticated soybeans. Such an elevation of oil content in seeds appears to be achieved through b1-modulated upregulation of oil biosynthesis in pods. This study shows pleiotropy as a mechanism underlying the domestication syndrome2, and may pave new strategies for development of soybean varieties with increased seed oil content and reduced seed dust.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Seed coat luster of G. max, G. soja and their progeny.
Fig. 2: Map-based cloning of the B1 locus.
Fig. 3: Pleiotropic effects of the B1 locus on seed oil content.
Fig. 4: Expression levels and interaction of four transcription factor genes regulating fatty acids biosynthesis in soybean.

References

  1. 1.

    Corner, E. J. H. The leguminous seed. Phytomorphology 12, 117–150 (1951).

    Google Scholar 

  2. 2.

    Olsen, K. M. & Wendel, J. F. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu. Rev. Plant. Biol. 64, 47–70 (2013).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Carter, T. E., Nelson, R., Sneller, C. H. & Cui, Z. in Soybeans: Improvement, Production and Uses 3 edn. (eds. Boerma, H. R. & Specht, J. E.) pp. 303-416 (American Society of Agronomy-Crop Science Society of America-Soil Science Society of America, 2004).

  4. 4.

    Liu, B. et al. QTL mapping of domestication-related traits in soybean (Glycine max). Ann. Bot. 100, 1027–1038 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Zhou, Z. et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408–414 (2015).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Wolf, W. J., Baker, F. L. & Bernard, R. L. Soybean seed-coat structural features: pits, deposits and cracks. Scanning Electron Microsc. 3, 531–544 (1981).

    Google Scholar 

  8. 8.

    Gijzen, M. et al. Hydrophobic protein synthesized in the pod endocarp adheres to the seed surface. Plant. Physiol. 120, 951–960 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Juvik, G. A., Bernard R. L., Chang R. Z. & Cavins J. F. Evaluation of the USDA wild soybean germplasm collection: maturity groups 000 to IV (PI-655.49 to PI-48.3464). Technical Bulletin 1761 (U.S. Govt. Print Office, U.S. Department of Agriculture, Washington, D.C., 1989).

  10. 10.

    Gijzen, M., Weng, C., Kuflu, K., Woodrow, L., Yu, K. & Poysa, V. Soybean seed lustre phenotype and surface protein cosegregate and map to linkage group E. Genome 46, 659–664 (2003).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Guodong, Z. et al. Inheritance of bloom on seed coat in soybean. Soybean Genet. Newsl. 14, 91–93 (1987).

    Google Scholar 

  12. 12.

    Palmer, R. G. & Kilen, T. C. Qualitative genetics and cytogenetics. (American Society of Agronomy, Madison, WI, 1987).

    Google Scholar 

  13. 13.

    Chen, Z. & Shoemaker, R. C. Four genes affecting seed traits in soybeans map to linkage group F. J. Hered. 89, 211–215 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    Wang, W. et al. Using presence/absence variation markers to identify the QTL/allele system that confers the small seed trait in wild soybean (Glycine soja Sieb. & Zucc.). Euphytica 208, 101–111 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Hyten, D. L. et al. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl Acad. Sci. USA 103, 16666–16671 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Song, Q. et al. Fingerprinting soybean germplasm and its utility in genomic research. G3 (Bethesda). 5, 1999–2006 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zhang, D., Zhao, M., Li, S., Sun, L., Wang, W., Cai, C., Dierking, E. C. & Ma, J. Plasticity and innovation of regulatory mechanisms underlying seed oil content mediated by duplicated genes in the palaeopolyploid soybean.Plant J. 90, 1120–1133 (2017).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Doust, A. N., Lukens, L., Olsen, K. M., Mauro-Herrera, M., Meyer, A. & Rogers, K. Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proc. Natl Acad. Sci. USA 111, 6178–6183 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wu, W. et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat. Plants 3, 17064 (2017).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Sun, L. et al. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat. Genet. 47, 939–943 (2015).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Bilyeu, K., Palavalli, L., Sleper, D. & Beuselinck, P. Mutations in soybean microsomal omega-3 fatty acid desaturase genes reduce linolenic acid concentration in soybean seeds. Crop. Sci. 45, 1830–1836 (2005).

    CAS  Article  Google Scholar 

  23. 23.

    To, A. et al. WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell. 24, 5007–5023 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ping, J. et al. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. Plant Cell. 26, 2831–2842 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J. L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Broman, K. W., Wu, H., Sen, Ś. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 19, 889–890 (2003).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Yang, J. et al. The I-TASSER suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2014).

    Article  Google Scholar 

  29. 29.

    Bradbury, P. J. et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23, 2633–2635 (2007).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was mainly supported by soybean checkoff funds from the North Central Soybean Research Program and Indiana Soybean Alliance, and partially supported by the Agriculture and Food Research Initiative competitive grant (2015-67013-22811) of the USDA National Institute of Food and Agriculture, the Republic of Korea Rural Development Administration (RDA) Research Program (Grant no. PJ0122112017), Taishan Scholarship and Purdue University AgSEED Program.

Author information

Affiliations

Authors

Contributions

J.M. and R.L.N. conceived and designed the research; D.Z., L.S., S.L., W.W., Y.D., S.A.S., L.L., X.W. X.T. and Z.Z. performed the research; D.Z., L.S., S.L., W.W., Z.T., P.B., C.C., R.L.N. and J.M. analysed the data; J.M. wrote the manuscript with input from D.Z., W.W., S.A.S. and R.L.N.

Corresponding author

Correspondence to Jianxin Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1 & 2, Supplementary Tables 1–4.

Life Sciences Reporting Summary

Supplementary Data 1

SNP genotyping data generated in this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Sun, L., Li, S. et al. Elevation of soybean seed oil content through selection for seed coat shininess. Nature Plants 4, 30–35 (2018). https://doi.org/10.1038/s41477-017-0084-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing