Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway

Abstract

Photorespiration is a major bioengineering target for increasing crop yields as it is often considered a wasteful process. Photorespiratory metabolism is integrated into leaf metabolism and thus may have certain benefits. Here, we show that plants can increase their rate of photosynthetic CO2 uptake when assimilating nitrogen de novo via the photorespiratory pathway by fixing carbon as amino acids in addition to carbohydrates. Plants fed NO3 had higher rates of CO2 assimilation under photorespiratory than low-photorespiratory conditions, while plants lacking NO3 nutrition exhibited lower stimulation of CO2 uptake. We modified the widely used Farquhar, von Caemmerer and Berry photosynthesis model to include the carbon and electron requirements for nitrogen assimilation via the photorespiratory pathway. Our modified model improves predictions of photosynthetic CO2 uptake and of rates of photosynthetic electron transport. The results highlight how photorespiration can improve photosynthetic performance despite reducing the efficiency of Rubisco carboxylation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic representation of the photosynthetic carbon reduction and photorespiratory cycles.
Fig. 2: Effect of N fertilization on α old.
Fig. 3: The CO2 response of A in KNO3-fertilized plants fitted with the photosynthesis model incorporating N assimilation.
Fig. 4: Modelled CO2 response of A to the chloroplastic CO2 concentration (C c), showing the effect of amino acid export from the photorespiratory pathway as glycine and serine.

References

  1. 1.

    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Busch, F. A., Sage, T. L., Cousins, A. B. & Sage, R. F. C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ. 36, 200–212 (2013).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Busch, F. A. Current methods for estimating the rate of photorespiration in leaves. Plant Biology 15, 648–655 (2013).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Sage, R. F., Sage, T. L. & Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63, 19–47 (2012).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Wingler, A., Lea, P. J., Quick, W. P. & Leegood, R. C. Photorespiration: metabolic pathways and their role in stress protection. Philos. T. Roy. Soc. B 355, 1517–1529 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    Bloom, A. J. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth. Res. 123, 117–128 (2015).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ros, R., Muñoz-Bertomeu, J. & Krueger, S. Serine in plants: biosynthesis, metabolism, and functions. Trends. Plant Sci. 19, 564–569 (2014).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Rachmilevitch, S., Cousins, A. B. & Bloom, A. J. Nitrate assimilation in plant shoots depends on photorespiration. Proc. Natl Acad. Sci. USA 101, 11506–11510 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Benstein, R. M. et al. Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. Plant Cell 25, 5011–5029 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Andrews, M. The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ. 9, 511–519 (1986).

    CAS  Google Scholar 

  11. 11.

    Scheurwater, I., Koren, M., Lambers, H. & Atkin, O. K. The contribution of roots and shoots to whole plant nitrate reduction in fast‐ and slow‐growing grass species. J. Exp. Bot. 53, 1635–1642 (2002).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Bloom, A. J., Caldwell, R. M., Finazzo, J., Warner, R. L. & Weissbart, J. Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol. 91, 352–356 (1989).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Stitt, M. et al. Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot. 53, 959–970 (2002).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    von Caemmerer, S. & Farquhar, G. D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387 (1981).

    Article  Google Scholar 

  15. 15.

    Sharkey, T. D. O2-insensitive photosynthesis in C3 plants: Its occurrence and a possible explanation. Plant Physiol. 78, 71–75 (1985).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Busch, F. A. & Sage, R. F. The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum. New. Phytol. 213, 1036–1051 (2017).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Harley, P. C. & Sharkey, T. D. An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynth. Res. 27, 169–178 (1991).

    CAS  PubMed  Google Scholar 

  18. 18.

    von Caemmerer, S. Biochemical Models of Leaf Photosynthesis (CSIRO Publishing, Collingwood, 2000).

  19. 19.

    Sage, R., Sharkey, T. & Pearcy, R. The effect of leaf nitrogen and temperature on the CO2 response of photosynthesis in the C3 dicot Chenopodium album L. Aust. J. Plant. Physiol. 17, 135–148 (1990).

    CAS  Article  Google Scholar 

  20. 20.

    Sage, R. F. & Sharkey, T. D. The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field-grown plants. Plant Physiol. 84, 658–664 (1987).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Woo, K. & Wong, S. Inhibition of CO2 assimilation by supraoptimal CO2: Effect of light and temperature. Funct. Plant Biol. 10, 75–85 (1983).

    CAS  Google Scholar 

  22. 22.

    Sharkey, T. D. & Vassey, T. L. Low oxygen inhibition of photosynthesis is caused by inhibition of starch synthesis. Plant Physiol. 90, 385–387 (1989).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bauwe, H., Hagemann, M. & Fernie, A. R. Photorespiration: Players, partners and origin. Trends. Plant Sci. 15, 330–336 (2010).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Dirks, R. C., Singh, M., Potter, G. S., Sobotka, L. G. & Schaefer, J. Carbon partitioning in soybean (Glycine max) leaves by combined 11C and 13C labeling. New Phytol. 196, 1109–1121 (2012).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Misra, J. B. Integrated operation of the photorespiratory cycle and cytosolic metabolism in the modulation of primary nitrogen assimilation and export of organic N-transport compounds from leaves: A hypothesis. J. Plant Physiol. 171, 319–328 (2014).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Xu, G., Fan, X. & Miller, A. J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63, 153–182 (2012).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Tischner, R. Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 23, 1005–1024 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    Taniguchi, M. & Miyake, H. Redox-shuttling between chloroplast and cytosol: Integration of intra-chloroplast and extra-chloroplast metabolism. Curr. Opin. Plant Biol. 15, 252–260 (2012).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Rathnam, C. K. M. Malate and dihydroxyacetone phosphate-dependent nitrate reduction in spinach leaf protoplasts. Plant Physiol. 62, 220–223 (1978).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Holfgrefe, S., Backhausen, J. E., Kitzmann, C. & Scheibe, R. Regulation of steady-state photosynthesis in isolated intact chloroplasts under constant light: Responses of carbon fluxes, metabolite pools and enzyme-activation states to changes of electron pressure. Plant Cell Physiol. 38, 1207–1216 (1997).

    CAS  Article  Google Scholar 

  31. 31.

    Kopriva, S. et al. Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor. Plant Physiol. 130, 1406–1413 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Van Beusichem, M. L., Kirkby, E. A. & Baas, R. Influence of nitrate and ammonium nutrition on the uptake, assimilation, and distribution of nutrients in Ricinus communis. Plant Physiol. 86, 914–921 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Bloom, A. J. et al. CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. Ecology 93, 355–367 (2012).

    Article  PubMed  Google Scholar 

  34. 34.

    Lewis, O. A. M. & Chadwick, S. An 15N investigation into nitrogen assimilation in hydroponically-grown barley (Hordeum vulgare L. cv. Clipper) in response to nitrate, ammonium and mixed nitrate and ammonium nutrition. New Phytol. 95, 635–646 (1983).

    CAS  Article  Google Scholar 

  35. 35.

    Murphy, A. T. & Lewis, O. A. M. Effect of nitrogen feeding source on the supply of nitrogen from root to shoot and the site of nitrogen assimilation in maize (Zea mays L. cv. R201). New Phytol. 107, 327–333 (1987).

    Article  Google Scholar 

  36. 36.

    Fair, P., Tew, J. & Cresswell, C. F. Enzyme activities associated with carbon dioxide exchange in illuminated leaves of Hordeum vulgare L. III. Effects of concentration and form of nitrogen supplied on carbon dioxide compensation point. Ann. Bot. London 38, 39–43 (1974).

    CAS  Article  Google Scholar 

  37. 37.

    Fridlyand, L. E., Backhausen, J. E. & Scheibe, R. Flux control of the malate valve in leaf cells. Arch. Biochem. Biophys. 349, 290–298 (1998).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Abadie, C., Boex-Fontvieille, E. R. A., Carroll, A. J. & Tcherkez, G. In vivo stoichiometry of photorespiratory metabolism. Nat. Plants 2, 15220 (2016).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Close, T. J. Dehydrins: A commonalty in the response of plants to dehydration and low temperature. Physiol. Plant. 100, 291–296 (1997).

    CAS  Article  Google Scholar 

  40. 40.

    Layton, B. E. et al. Dehydration-induced expression of a 31-kDa dehydrin in Polypodium polypodioides (Polypodiaceae) may enable large, reversible deformation of cell walls. Am. J. Bot. 97, 535–544 (2010).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Sakamoto, A. & Murata, N. The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants. Plant Cell Environ. 25, 163–171 (2002).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Noctor, G. et al. Glutathione in plants: An integrated overview. Plant Cell Environ. 35, 454–484 (2012).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Laisk, A., Eichelmann, H., Oja, V., Rasulov, B. & Ramma, H. Photosystem II cycle and alternative electron flow in leaves. Plant Cell Physiol. 47, 972–983 (2006).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Warren, C. Estimating the internal conductance to CO2 movement. Funct. Plant Biol. 33, 431–442 (2006).

    CAS  Article  Google Scholar 

  45. 45.

    Feng, Z. et al. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob. Change Biol. 21, 3152–3168 (2015).

    Article  Google Scholar 

  46. 46.

    Noctor, G. & Foyer, C. H. A re-evaluation of the ATP:NADPH budget during C3 photosynthesis: A contribution from nitrate assimilation and its associated respiratory activity? J. Exp. Bot. 49, 1895–1908 (1998).

    CAS  Google Scholar 

  47. 47.

    Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30, 1035–1040 (2007).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Holloway-Phillips for assistance with growing the plants. This work was supported by the ARC Centre of Excellence for Translational Photosynthesis and by the Australian Science Industry and Endowment Fund (SIEF grant RP04-122). R.F.S. was supported by Discovery grants 154273-2007 and 154273-2012 from the Natural Science and Engineering Research Council (NSERC) of Canada.

Author information

Affiliations

Authors

Contributions

F.A.B. conceived the study and undertook the experimental work, with input from R.F.S. F.A.B. and G.D.F. carried out the modelling. F.A.B. wrote the manuscript with help from all authors.

Corresponding author

Correspondence to Florian A. Busch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

A description of the derivation of expressions for α G and α S, Supplementary Figures 1–4. Supplementary Table 1.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Busch, F.A., Sage, R.F. & Farquhar, G.D. Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway. Nature Plants 4, 46–54 (2018). https://doi.org/10.1038/s41477-017-0065-x

Download citation

Further reading