Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers

Abstract

Genetic modification plays a vital role in breeding new crops with excellent traits. Almost all the current genetic modification methods require regeneration from tissue culture, involving complicated, long and laborious processes. In particular, many crop species such as cotton are difficult to regenerate. Here, we report a novel transformation platform technology, pollen magnetofection, to directly produce transgenic seeds without regeneration. In this system, exogenous DNA loaded with magnetic nanoparticles was delivered into pollen in the presence of a magnetic field. Through pollination with magnetofected pollen, transgenic plants were successfully generated from transformed seeds. Exogenous DNA was successfully integrated into the genome, effectively expressed and stably inherited in the offspring. Our system is culture-free and genotype independent. In addition, it is simple, fast and capable of multi-gene transformation. We envision that pollen magnetofection can transform almost all crops, greatly facilitating breeding processes of new varieties of transgenic crops.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Processes and principles of pollen magnetofection.
Fig. 2: Characterizations of MNP–DNA complexes showed that MNPs had effectively been loaded with DNA.
Fig. 3: Pollen viability and tracking of MNPs within the pollen indicated that MNP–DNA complexes were successfully internalized in pollen with high viability.
Fig. 4: Genetic analyses of T1 generation confirmed that BTΔα-CPTI gene was integrated in the genome, transcribed and expressed in the plants, resulting in insect resistance in transgenic cotton.
Fig. 5: Inheritance stability analyses of T1 to T3 generations suggested that the BTΔα-CPTI gene is stably inherited and expressed in the offspring of transgenic cotton.

References

  1. 1.

    Ahmad, P. et al. Role of transgenic plants in agriculture and biopharming. Biotechnol. Adv. 30, 524–540 (2012).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Ashraf, M. & Akram, N. A. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnol. Adv. 27, 744–752 (2009).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Rojas, C. A., Hemerly, A. S. & Ferreira, P. C. Genetically modified crops for biomass increase. Genes and strategies. GM Crops 1, 137–142 (2010).

    Article  PubMed  Google Scholar 

  4. 4.

    Newell, C. A. Plant transformation technology. Developments and applications. Mol. Biotechnol. 16, 53–65 (2000).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Rivera, A. L., Gómez-Lim, M., Fernández, F. & Loske, A. M. Physical methods for genetic plant transformation. Phys. Life Rev. 9, 308–345 (2012).

    Article  PubMed  Google Scholar 

  6. 6.

    Rao, A. Q. et al. The myth of plant transformation. Biotechnol. Adv. 27, 753–763 (2009).

    Article  PubMed  Google Scholar 

  7. 7.

    Taylor, N. J. & Fauquet, C. M. Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol. 21, 963–977 (2002).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Hansen, G. & Wright, M. S. Recent advances in the transformation of plants. Trends Plant Sci. 4, 226–231 (1999).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Juturu, V. N., Mekala, G. K. & Kirti, P. B. Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.). Plant Cell Tiss. Organ. Cult. 120, 813–839 (2014).

    Article  Google Scholar 

  10. 10.

    Trolinder, N. L. & Goodin, J. R. Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep. 6, 231–234 (1987).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Trolinder, N. L. & Xhixian, C. Genotype specificity of the somatic embryogenesis response in cotton. Plant Cell Rep. 8, 133–136 (1989).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Christou, P. Transformation technology. Trends Plant Sci. 1, 423–431 (1996).

    Article  Google Scholar 

  13. 13.

    Morre, J. L., Permingeat, H. R., Romagnoli, M. V., Heisterborg, C. M. & Vallejos, R. H. Multiple shoot induction and plant regeneration from embryonic axes of cotton. Plant Cell Tiss. Org. 54, 131–136 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    Krishna, G., Reddy, P. S., Ramteke, P. W. & Bhattacharya, P. S. Progress of tissue culture and genetic transformation research in pigeon pea (Cajanus cajan (L.) Millsp.). Plant Cell Rep. 29, 1079–1095 (2010).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Stöger, E., Moreno, R. M. B., Ylstra, B., Vicente, O. & Heberle-Bors, E. Comparison of different techniques for gene transfer into mature and immature tobacco pollen. Transgen. Res. 1, 71–78 (1992).

    Article  Google Scholar 

  16. 16.

    Schreiber, D. N. & Dresselhaus, T. In vitro pollen germination and transient transformation of Zea mays and other plant species. Plant Mol. Biol. Rep. 21, 31–41 (2003).

    Article  Google Scholar 

  17. 17.

    Wang, W. Q. et al. Pollen-mediated transformation of Sorghum bicolor plants. Biotechnol. Appl. Bioc. 48, 79–83 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Ohta, Y. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl Acad. Sci.  USA  83, 715–719 (1986).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Touraev, A., Stöger, E., Voronin, V. & Heberle-Bors, E. Plant male germ line transformation. Plant J. 12, 949–956 (1997).

    CAS  Article  Google Scholar 

  20. 20.

    Abdul-Baki, A. A., Saunders, J. A., Matthews, B. F. & Pittarelli, G. W. DNA uptake during electroporation of germinating pollen grains. Plant Sci. 70, 181–190 (1990).

    CAS  Article  Google Scholar 

  21. 21.

    Aronen, T. S., Nikkanen, T. O. & Häggman, H. M. Compatibility of different pollination techniques with microprojectile bombardment of Norway spruce and Scots pine pollen. Can. J. For. Res. 28, 79–86 (1998).

    Article  Google Scholar 

  22. 22.

    Barinova, L. et al. Antirrhinum majus microspore maturation and transient transformation in vitro. J. Exp. Bot. 53, 1119–1129 (2002).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Fernando, D. D., Owens, J. N. & Misra, S. Transient gene expression in pine pollen tubes following particle bombardment. Plant Cell Rep. 19, 224–228 (2000).

    CAS  Article  Google Scholar 

  24. 24.

    Folling, L. & Olesen, A. Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment. Plant Cell Rep. 23, 629–636 (2001).

    Google Scholar 

  25. 25.

    Tjokrokusumo, D., Heinrich, T., Wylie, S., Potter, R. & McComb, J. Vacuum infiltration of Petunia hybrida pollen with Agrobacterium tumefaciens to achieve plant transformation. Plant Cell Rep. 19, 792–797 (2000).

    CAS  Article  Google Scholar 

  26. 26.

    Kumlehn, J., Serazetdinova, L., Hensel, G., Becker, D. & Loerz, H. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol. J. 4, 251–261 (2006).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Kim, S.-S., Shin, D.-I. & Park, H.-S. Transient β-glucuronidase expression in lily (Lilium longflorum L.) pollen via wounding-assisted Agrobacterium-mediated transformation. Biotechnol. Lett. 29, 965–969 (2007).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Wang, H. & Jiang, L. W. Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat. Protoc. 6, 419–426 (2011).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Ali, A., Bang, S. W., Chung, S. M. & Staub, J. E. Plant transformation via pollen tube-mediated gene transfer. Plant Mol. Bio. Rep. 33, 742–747 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Eapen, S. Pollen grains as a target for introduction of foreign genes into plants: an assessment. Physiol. Mol. Biol. Plants 17, 1–8 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Torney, F., Trewyn, B. G., Lin, V. S. & Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2, 295–300 (2007).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Scherer, F. et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 9, 102–109 (2002).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Dobson, J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 13, 283–287 (2006).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Plank, C., Zelphati, O. & Mykhaylyk, O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv. Drug Deliv. Rev. 63, 1300–1331 (2011).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Hao, R. et al. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 22, 2729–2742 (2010).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Tseng, P., Judy, J. W. & Di Carlo, D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nat. Methods 9, 1113–1119 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wang, Y. et al. A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. Plos ONE 9, e102886 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Chen, W. et al. Characterization and insights into the nano liposomal magnetic gene vector used for cell co-transfection. J. Nanosci. Nanotechnol. 15, 1–7 (2014).

    Google Scholar 

  39. 39.

    Zhao, X. et al. Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. Plos ONE 9, e98919 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Wang, Y. et al. Study on performance of magnetic fluorescent nanoparticles as gene carrier and location in pig kidney cells. Nanoscale Res. Lett. 8, 127 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ressayre, A., Godelle, B., Mignot, A. & Gouyon, Ph A morphogenetic model accounting for pollen aperture pattern in flowering plants. J. Theor. Biol. 193, 321–334 (1998).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Kakani, V. G. et al. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann. Bot. 96, 59–67 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Wang, Y., Zhang, R., Zu, M. T. & Guo, S. D. Bt-Cpti insect-resistant hybrid cotton: YingMian 2. China Cotton 9, 20 (2005).

    CAS  Google Scholar 

  44. 44.

    Liu, Z. L., Jiang, W. C., Su, J. Q. & Zhang, H. Y. A new variety of disease-resistant and high yield cotton: SU12. Jiangsu Agr. Sci. 4, 25–26 (1997).

    Google Scholar 

  45. 45.

    Singh, M. & Bhalla, P. Control of male germ-cell development in flowering plants. Bioessays 29, 1124 (2007).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2014); https://www.r-project.org/

Download references

Acknowledgements

This research was supported by the Major National Scientific Research Program of China (2014CB932200), the Genetically Modified Organisms Breeding Major Projects of China (No. 2009ZX08010-006B), the Agricultural Science and Technology Innovation Program (CAASXTCX2016004), the National Natural Science Foundation of China (No. 31301373), the Beijing Municipal Natural Science Foundation (6164045) and the Genetically Modified Organisms Breeding Major Projects of China (No. 2011ZX08005-004).

We thank Q. Wu and C. X. Wang of the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences for pepper pollen, pumpkin pollen and cocozelle pollen.

Author information

Affiliations

Authors

Contributions

H.C., S.G., R.Z. and D.L. conceived the experiment. X.Z. performed pollen transformation system construction and tracking of MNP–DNA complexes in pollen; Z.M. performed vector construction and promoter analysis; X.Z., Z.M., Y.W.,W.C. and M.Y. performed pollen transformation and transgenic plant analysis; Z.M., X.Z., W.C., C.S. and J.C. performed the field trial; X.Z., Y.W., B.C. and Z.Z. analysed the data; H.C., D.L., X.Z. and Y.W. wrote the paper; J.Q.C. performed the statistical analyses.

Corresponding authors

Correspondence to Rui Zhang or Haixin Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–37, Supplementary Tables 1–6, Supplementary References

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Meng, Z., Wang, Y. et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants 3, 956–964 (2017). https://doi.org/10.1038/s41477-017-0063-z

Download citation

Further reading