Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crystal structure of Deg9 reveals a novel octameric-type HtrA protease

Abstract

The high temperature requirement A (HtrA) proteases (also termed Deg proteases) play important roles in diverse organisms by regulating protein quality and quantity. One of the 16 Arabidopsis homologs, Deg9, is located in the nucleus where it modulates cytokinin- and light-mediated signalling via degrading the ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4). To uncover the structural features underlying the proteolytic activity of Deg9, we determined its crystal structure. Unlike the well-established trimeric building block of HtrAs, Deg9 displays a novel octameric structure consisting of two tetrameric rings that have distinct conformations. Based on the structural architecture, we generated several mutant variants of Deg9, determined their structure and tested their proteolytic activity towards ARR4. The results of the structural and biochemical analyses allowed us to propose a model for a novel mechanism of substrate recognition and activity regulation of Deg9. In this model, protease activation of one tetramer is mediated by en-bloc reorientation of the protease domains to open an entrance for the substrate in the opposite (inactive) tetramer. This study provides the structural basis for understanding how the levels of nuclear signal components are regulated by a plant protease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the Deg9 octamer.
Fig. 2: Structures of the Deg9 variant lacking the PDZ domain and a Deg9 substitute fusion protein.
Fig. 3: Conformational differences in the activation domains between tetramers A and B.
Fig. 4: Heterogeneous dynamics in the octamer at 4 °C and 16 °C.
Fig. 5: Intersubunit crosstalk between tetramers.
Fig. 6: The model of Deg9 protease activation and substrate access.

Similar content being viewed by others

References

  1. Clausen, T., Kaiser, M., Huber, R. & Ehrmann, M. HtrA proteases: regulated proteolysis in protein quality control. Nat. Rev. Mol. Cell Biol. 12, 152–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Schuhmann, H., Huesgen, P. F. & Adamska, I. The family of Deg/HtrA proteases in plants. BMC Plant Biol. 12, 52 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilken, C., Kitzing, K., Kurzbauer, R., Ehrmann, M. & Clausen, T. Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease domain. Cell 117, 483–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Truebestein, L. et al. Substrate induced remodeling of the active site regulates HtrA1 activity. Nat. Struct. Mol. Biol. 18, 386–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Li, W. et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat. Struct. Biol. 9, 436–441 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Malet, H. et al. Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ. Nat. Struct. Mol. Biol. 19, 152–157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. & Clausen, T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Schuhmann, H. & Adamska, I. Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell. Physiol. Plant. 145, 224–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Sun, R. et al. Crystal structure of Arabidopsis Deg2 protein reveals an internal PDZ ligand locking the hexameric resting state. J. Biol. Chem. 287, 37564–37569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kley, J. et al. Structural adaptation of the plant protease Deg1 to repair photosystem II during light exposure. Nat. Struct. Mol. Biol. 18, 728–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Sun, W. et al. The structure of Arabidopsis Deg5 and Deg8 reveal new insight into HtrA protease. Acta Crystallogr. D. 69, 830–837 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun, X. et al. Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. Plant Cell 19, 1347–1361 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Helm, M. et al. Dual specificities of the glyoxysomal/peroxisomal processing protease Deg15. Proc. Natl Acad. Sci. USA 104, 11501–11506 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chi, W. et al. DEG9, a serine protease modulates cytokinins and light signaling by regulating the level of Arabidopsis Response Regulator 4. Proc. Natl Acad. Sci. USA 113, E3568–3576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krojer, T. et al. Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc. Natl Acad. Sci. USA 105, 7702–7707 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Walsh, N. P., Alba, B., Bose, M. B., Gross, C. A. & Sauer, R. T. OMP peptide signals initiate the envelope stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113, 61–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Sohn, J., Grant, R. A. & Sauer, R. T. Allosteric activation of DegS, a stress sensor PDZ protease. Cell 131, 572–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Carretero-Paulet, L. et al. Genome-wide analysis of adaptive molecular evolution in the carnivorous plant Utricularia gibba. Genome Biol. Evol. 7, 444–456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perona, J. J. & Craik, C. S. Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J. Biol. Chem. 272, 29987–29990 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. de Regt, A. K. et al. A conserved activation cluster is required for allosteric communication in HtrA-family protease. Structure 23, 517–526 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jarzab, M. et al. Intra- and intersubunit changes accompanying thermal activation of the HtrA2(Omi) protease homotrimer. Biochim. Biophys. Acta. 1864, 283–296 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Merdanovic, M. et al. Determinants of structural and functional plasticity of a widely conserved protease chaperone complex. Nat. Struct. Mol. Biol. 17, 837–843 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Stetefeld, J., Jenny, M. & Burkhard, P. Intersubunit signaling in glutamate-1-semialdehyde-aminomutase. Proc. Natl Acad. Sci. USA 103, 13688–13693 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Swaminathan, K., Flynn, P., Reece, R. J. & Marmorstein, R. Crystal structure of a PUT3-DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster. Nat. Struct. Biol. 4, 751–759 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Sheu, S. Y., Liu, Y. C. & Yang, D. Y. Interfacial water effect on cooperativity and signal communication in Scapharca dimeric hemoglobin. Phys. Chem. Chem. Phys. 19, 7380–7389 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Sweere, U. et al. Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294, 1108–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Mira-Rodado, V. et al. Functional cross-talk between two-component and phytochrome B signal transduction in Arabidopsis. J. Exp. Bot. 58, 2595–2607 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Verma, V., Sivaraman, J., Srivastava, A. K., Sadanandom, A. & Kumar, P. P. Destabilization of interaction between cytokinin signaling intermediates AHP1 and ARR4 modulates Arabidopsis development. New Phytol. 206, 726–737 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Hwang, I., Chen, H. C. & Sheen, J. Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129, 500–515 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krojer, T., Sawa, J., Huber, R. & Clausen, T. HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues. Nat. Struct. Mol. Biol. 17, 844–852 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, J. et al. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc. Natl. Acad. Sci. USA 105, 11939–11944 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hallgren, J., Spillmann, D. & Pejler, G. Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin. J. Biol. Chem. 276, 42774–42781 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Sommerhoff, C. P. et al. The structure of the human beta II-tryptase tetramer: fo(u)r better or worse. Proc. Natl Acad. Sci. USA 96, 10984–10991 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pereira, P. J. et al. Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Nature 392, 306–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Fukuoka, Y. & Schwartz, L. B. Human beta-tryptase: detection and characterization of the active monomer and prevention of tetramer reconstitution by protease inhibitors. Biochemistry 43, 10757–10764 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Fukuoka, Y. & Schwartz, L. B. The B12 anti-tryptase monoclonal antibody disrupts the tetrameric structure of heparin-stabilized beta-tryptase to form monomers that are inactive at neutral pH and active at acidic pH. J. Immunol. 176, 3165–3172 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schechter, N. M., Choi, E. J., Selwood, T. & McCaslin, D. R. Characterization of three distinct catalytic forms of human tryptase-beta: their interrelationships and relevance. Biochemistry 46, 9615–9629 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, T. H. et al. The role of dimer asymmetry and protomer dynamics in enzyme catalysis. Science 355, 262–287 (2017).

    Article  CAS  Google Scholar 

  40. Kad, N. M., Ranson, N. A., Cliff, M. J. & Clarke, A. R. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. J. Mol. Biol. 278, 267–278 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Zheng, W., Johnston, S. A. & Joshua-Tor, L. The unusual active site of Gal6/bleomycin hydrolase can act as a carboxypeptidase, aminopeptidase, and peptide ligase. Cell 93, 103–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Larsen, C. N. & Finley, D. Protein translocation channels in the proteasome and other proteases. Cell 91, 431–434 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Tamura, T. et al. Tricorn protease-the core of a modular proteolytic system. Science 274, 1385–1389 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Gao, Y., Wu, S. & Ye, X. The effects of monovalent metal ions on the conformation of human telomere DNA using analytical ultracentrifugation. Soft Matter 12, 5959–5967 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D 59, 1131–1137 (2003).

    Article  PubMed  Google Scholar 

  47. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Joint NSFC-ISF Research Program (jointly funded by the National Natural Science Foundation of China and the Israel Science Foundation (31661143026)), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17000000) and the Youth Innovation Promotion Association CAS (2013059). We thank the Shanghai Synchrotron Radiation Facility and the Lin Liu lab for technical support during data collection and analysis.

Author information

Authors and Affiliations

Authors

Contributions

M.O. and L.Z. designed the study; M.O. and X.L. performed the research; M.O., X.L., T.C., S.Z. and H.P. analysed the data; M.O. and L.Z. wrote the paper. J.S., T.C. and Z.A. assisted in writing and discussion.

Corresponding author

Correspondence to Lixin Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Tables 1 and 2, Supplementary Figures 1–11

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, M., Li, X., Zhao, S. et al. The crystal structure of Deg9 reveals a novel octameric-type HtrA protease. Nature Plants 3, 973–982 (2017). https://doi.org/10.1038/s41477-017-0060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0060-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing