Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A potent Cas9-derived gene activator for plant and mammalian cells

Abstract

Overexpression of complementary DNA represents the most commonly used gain-of-function approach for interrogating gene functions and for manipulating biological traits. However, this approach is challenging and inefficient for multigene expression due to increased labour for cloning, limited vector capacity, requirement of multiple promoters and terminators, and variable transgene expression levels. Synthetic transcriptional activators provide a promising alternative strategy for gene activation by tethering an autonomous transcription activation domain (TAD) to an intended gene promoter at the endogenous genomic locus through a programmable DNA-binding module. Among the known custom DNA-binding modules, the nuclease-dead Streptococcus pyogenes Cas9 (dCas9) protein, which recognizes a specific DNA target through base pairing between a synthetic guide RNA and DNA, outperforms zinc-finger proteins and transcription activator-like effectors, both of which target through protein–DNA interactions1. Recently, three potent dCas9-based transcriptional activation systems, namely VPR, SAM and SunTag, have been developed for animal cells2,3,4,5,6. However, an efficient dCas9-based transcriptional activation platform is still lacking for plant cells7,8,9. Here, we developed a new potent dCas9–TAD, named dCas9–TV, through plant cell-based screens. dCas9–TV confers far stronger transcriptional activation of single or multiple target genes than the routinely used dCas9–VP64 activator in both plant and mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: dCas9–TV-mediated gene activation in Arabidopsis
Fig. 2: Modified strategies of dCas9–TV-mediated gene activation in Arabidopsis and other cells.

Similar content being viewed by others

References

  1. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 2–6 (2015).

    Article  Google Scholar 

  6. Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Piatek, A. et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 13, 578–589 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Lowder, L. G. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169, 971–985 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vazquez-Vilar, M. et al. A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods 12, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Didovyk, A., Borek, B., Tsimring, L. & Hasty, J. Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications. Curr. Opin. Biotechnol. 40, 177–184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beerli, R. R., Segal, D. J., Dreier, B. & Barbas, C. F. III Toward controlling gene expression at will: Specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl Acad. Sci. USA 95, 14628–14633 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng, A. W. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23, 1163–1171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farzadfard, F., Perli, S. D. & Lu, T. K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2, 604–613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braun, C. J. et al. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc. Natl Acad. Sci. USA 113, 3892–3900 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tiwari, S. B. et al. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. Plant J. 70, 855–865 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Li, J. et al. Activation domains for controlling plant gene expression using designed transcription factors. Plant Biotechnol. J. 11, 671–680 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, W., Yang, B., Wills, N., Johnson, L. B. & White, F. F. The C terminus of AvrXa10 can be replaced by the transcriptional activation domain of VP16 from the herpes simplex virus. Plant Cell 11, 1665–1674 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang, X. et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 3, 17018 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Zipfel, C. & Oldroyd, G. E. D. Plant signalling in symbiosis and immunity. Nature 543, 328–336 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Hu, J. et al. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res. 42, 4375–4390 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, J. F., Zhang, D. & Sheen, J. Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat. Protoc. 9, 939–949 (2015).

    Article  Google Scholar 

  25. Puchta, H. Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J. 87, 5–15 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Schellenberger, V. et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotechnol. 27, 1186–1190 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Ryu, J. et al. Protein-stabilizing and cell-penetrating properties of α-helix domain of 30Kc19 protein. Biotechnol. J. 11, 1443–1451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, J. F. et al. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, J. F. et al. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25, 1507–1522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zetsche, B. et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Y. et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Ausubel and Z. Cheng for critical reading of this manuscript. This work was supported by the National Natural Science Foundation of China grant 31522006 and start-up funds from China’s Thousand Young Talents Program to J.-F.L. and the NIH grant R01GM70567 to J.S. This work was partially supported by the Guangzhou Science and Technology Project grant 201605030012.

Author information

Authors and Affiliations

Authors

Contributions

J.-F.L. and J.S. conceived the study. J.-F.L. designed the experiments and supervised the study. D.Z. conducted the protoplast-based screens of dCas9 activators. Z.L. conducted other dCas9–TV experiments in Arabidopsis protoplasts and transgenic plants. X.X. and Z.L. conducted the dCas9–TV experiments in rice protoplasts. B.Y. conducted the dCas9–TV experiments in human HEK 293T cells. Z.L., X.X. and W.X. performed the RNP-mediated gene activation. J.-F.L. wrote the manuscript with input from J.S. and all other authors.

Corresponding author

Correspondence to Jian-Feng Li.

Ethics declarations

Competing interests

The authors have filed a patent application based on some results reported in this paper.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Results, Supplementary Figures 1–13, Supplementary Tables 1–4, Supplementary Sequences, Supplementary Database, Supplementary Methods, Supplementary References.

Life Sciences Reporting Summary

Supplementary Dataset 1

RNA-seq data of Arabidopsis protoplasts expressing or not expressing dCas9–TV and sgRNA-RLP23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, D., Xiong, X. et al. A potent Cas9-derived gene activator for plant and mammalian cells. Nature Plants 3, 930–936 (2017). https://doi.org/10.1038/s41477-017-0046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0046-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing