Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Duplication of an upstream silencer of FZP increases grain yield in rice

Abstract

Transcriptional silencer and copy number variants (CNVs) are associated with gene expression. However, their roles in generating phenotypes have not been well studied. Here we identified a rice quantitative trait locus, SGDP7 (Small Grain and Dense Panicle 7). SGDP7 is identical to FZP (FRIZZY PANICLE), which represses the formation of axillary meristems. The causal mutation of SGDP7 is an 18-bp fragment, named CNV-18bp, which was inserted ~5.3 kb upstream of FZP and resulted in a tandem duplication in the cultivar Chuan 7. The CNV-18bp duplication repressed FZP expression, prolonged the panicle branching period and increased grain yield by more than 15% through substantially increasing the number of spikelets per panicle (SPP) and slightly decreasing the 1,000-grain weight (TGW). The transcription repressor OsBZR1 binds the CGTG motifs in CNV-18bp and thereby represses FZP expression, indicating that CNV-18bp is the upstream silencer of FZP. These findings showed that the silencer CNVs coordinate a trade-off between SPP and TGW by fine-tuning FZP expression, and balancing the trade-off could enhance yield potential.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mapping and cloning of SGDP7.
Fig. 2: Performance of FZP RNAi plants in the genetic background of NIL-NN.
Fig. 3: The effect of FZP on cell number contributes to grain length.
Fig. 4: OsBZR1 repressed gene expression by binding to CNV-18bp.
Fig. 5: Comparison analysis and nucleotide diversity analysis of FZP.

Similar content being viewed by others

References

  1. Ikeda, M. et al. Genes offering the potential for designing yield-related traits in rice. Curr. Opin. Plant Biol. 16, 213–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, Y. H. & Li, J. Y. Branching in rice. Curr. Opin. Plant Biol. 14, 1–6 (2011).

    Article  Google Scholar 

  3. Zhang, D. B. & Zheng, Y. Molecular control of grass inflorescence development. Annu. Rev. Plant Biol. 65, 553–578 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Bai, X. F. et al. Genome-wide association analysis reveals different genetic control in panicle architecture between indica and japonica rice. Plant Genome 9, 2 (2016).

    Article  Google Scholar 

  5. Xing, Y. Z. & Zhang, Q. F. Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61, 421–442 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Zuo, J. R. & Li, J. Y. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu. Rev. Genet. 48, 99–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Huang, X. Z. et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Jiao, Y. Q. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Li, M. et al. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol. J. 9, 1002–1013 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Zha, X. J. et al. Over-expression of the rice LRK1 gene improves quantitative yield components. Plant Biotechnol. J. 7, 611–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Yoshida, A. et al. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proc. Natl Acad. Sci. USA 110, 767–772 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Fan, C. C. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Qi, P. et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res. 22, 1666–1680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, X. J. et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc. Natl Acad. Sci. USA 109, 21534–21539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y. X. et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47, 944–948 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, S. K. et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47, 949–954 (2015b).

    Article  CAS  PubMed  Google Scholar 

  17. Si, L. Z. et al. OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48, 447–456 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Song, X. J. et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Shomura, A. et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023–1028 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Weng, J. F. et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18, 1199–1209 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, S. K. et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, 950–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, E. T. et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 40, 1370–1374 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y. B. et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43, 1266–1269 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Che, R. H. et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2, 15195 (2015).

    Article  PubMed  Google Scholar 

  26. Duan, P. G. et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat. Plants 2, 15203 (2015).

    Article  PubMed  Google Scholar 

  27. Gao, F. et al. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat. Plants 2, 15196 (2015).

    Article  PubMed  Google Scholar 

  28. Sakabe, N. J. et al. Transcriptional enhancers in development and disease. Genome Biol. 13, 238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kolovos, P. et al. Enhancers and silencers: an integrated and simple model for their function. Epigenet. Chrom. 5, 1 (2012).

    Article  CAS  Google Scholar 

  30. Ishii, T. et al. OsLG1 regulates a closed panicle trait in domesticated rice.Nat. Genet. 45, 462–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, Z. F. et al. Genetic control of inflorescence architecture during rice domestication. Nat. Commun. 4, 2200 (2013).

    Article  Google Scholar 

  32. Mathelier, A. et al. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 42, D142–D147 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Clark, R. M. et al. A distant upstream enhancer at the maize domestication gene t b1 has pleiotropic effects on plant and inflorescent architecture.Nat. Genet. 38, 594–597 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, L. et al. Induced and natural variation of promoter length modulates the photoperiodic response of FLOWERING LOCUS T. Nat. Commun. 5, 4558 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, J. F. et al. GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat. Plants 3, 17043 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. McEachern, L. & Lloyd, V. The maize b1 paramutation control region causes epigenetic silencing in Drosophila melanogaster. Mol. Genet. Genomics 287, 591–606 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Bai, X. F. et al. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet. 11, 16 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bañuelos, M. A. et al. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol. 130, 784–795 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Komatsu, M. et al. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130, 3841–3850 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Bai, X. F. et al. Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice. Sci. Rep. 6, 19022 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He, J. X. et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307,1634–1638 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lou, S. L. et al. The far-upstream regulatory region of RFL is required for its precise spatial-temporal expression for floral development in rice.Plant Mol. Biol. 93, 185–195 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Oh, E. et al. TOPLESS mediates brassinosteroid-induced transcriptional repression through interaction with BZR1. Nat. Commun. 5, 4140 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Civáň, P. et al. Three geographically separate domestications of Asian rice. Nat. Plants 1, 15164 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li, Y. B. et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nat. Genet. 46, 398–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Tan, Y. F. et al. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor. Appl. Genet. 99, 642–648 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Qiao, S. L. et al. The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant Cell 29, 292–309 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. McGinnis, K. et al. Transgene-induced RNA interference as a tool for plant functional genomics. Methods Enzymol. 392, 1–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Yuan, B. et al. Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta 226, 953–960 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. De, B. M. & Debrouwer, D. RNA–RNA in situ hybridization using digoxigenin-labelled probes: the use of high-molecular-weight polyvinyl alcohol in the alkaline phosphatase indoxyl–nitroblue tetrazolium reaction. Anal. Biochem. 215, 86–89 (1993).

    Article  Google Scholar 

  51. Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Lin, R. H. et al. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, 1302–1305 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smaczniak, C. et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl Acad. Sci. USA. 109, 1560–1565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu, X. L. et al. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. Plant J. 82, 570–581 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Ohta, M. et al. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13, 1959–1968 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hao, Y. J. et al. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta 232, 1033–1043 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Zong, W. et al. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription 4 factor targets drought resistance related genes. Plant Physiol. 171, 2810–2825 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Kaufmann at Potsdam University for providing the pSPUTK expression vector. We thank D. Zhang at Shanghai Jiao Tong University for kindly providing the antiserum for OsBZR1, and S. Sun at Huazhong Agricultural University for kindly providing the OsBZR1-activation plants. This work was financially supported through grants from the National Natural Science Foundation of China (91535301), the National Key Research and Development Program of China (2016YFD0100403), the National Special Program for Research of Transgenic Plants of China (2014ZX0800944B) and Hubei Collaborative Innovation Center for Grain Industry (2015ZD003).

Author information

Authors and Affiliations

Authors

Contributions

X.B. performed fine mapping of the quantitative trait locus, in situ hybridization, qRT–PCR, RNA-seq analysis, ChIP analysis, phenotypic observation and data analysis. Y.Hua. conducted genetic transformation and SEM. Y.Hu performed yeast one-hybrid assays and transcriptional activity assays. H.L. performed electrophoretic mobility shift assays. B.Z. collected some phenotype data. C.S. constructed the vectors for expression of the OsBZR1 protein. G.H. and Z.H. performed the nucleotide diversity analysis. Y.X. designed the experiments and wrote the paper together with X.B.

Corresponding author

Correspondence to Yongzhong Xing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–15, Supplementary Tables 1–9

Life sciences reporting summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Huang, Y., Hu, Y. et al. Duplication of an upstream silencer of FZP increases grain yield in rice. Nature Plants 3, 885–893 (2017). https://doi.org/10.1038/s41477-017-0042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0042-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing