Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo

A Publisher Correction to this article was published on 11 January 2018

This article has been updated

Abstract

During early plant embryogenesis, precursors for all major tissues and stem cells are formed. While several components of the regulatory framework are known, how cell fates are instructed by genome-wide transcriptional activity remains unanswered—in part because of difficulties in capturing transcriptome changes at cellular resolution. Here, we have adapted a two-component transgenic labelling system to purify cell-type-specific nuclear RNA and generate a transcriptome atlas of early Arabidopsis embryo development, with a focus on root stem cell niche formation. We validated the dataset through gene expression analysis, and show that gene activity shifts in a spatio-temporal manner, probably signifying transcriptional reprogramming, to induce developmental processes reflecting cell states and state transitions. This atlas provides the most comprehensive tissue- and cell-specific description of genome-wide gene activity in the early plant embryo, and serves as a valuable resource for understanding the genetic control of early plant development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: mBirA expression and selected gold-standard INTACT (INT) lines.
Fig. 2: INTACT efficiently isolate cell-type- and stage-specific nuclei.
Fig. 3
Fig. 4: Schematic diagram of experimental set-up.
Fig. 5: Expression patterns of selected genes validate atlas transcriptomic profiles.
Fig. 6: Expression diversity is cell-type- and stage-specific.
Fig. 7: Spatio-temporal shifts in developmental processes define early embryonic cell fate.

Change history

  • 11 January 2018

    In the version of this Resource originally published, the author information was incorrect. Jos R. Wendrich should have had a present address: Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium. Mark Boekschoten and Guido J. Hooiveld should have been affiliated to the Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE Wageningen, The Netherlands. In addition, the version of Supplementary Table 5 originally published with this Resource was not the intended final version and included inaccurate citations to the display items of the Resource, and the file format and extension did not match. These errors have now been corrected in all versions of the Resource.

References

  1. 1.

    Esua, K. Anatomy of Seed Plants. 2nd edn, 475–495 (Wiley, New York, 1977).

  2. 2.

    van den Berg, C., Willemsen, V., Hendriks, G., Weisbeek, P. & Scheres, B. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390, 287–289 (1997).

    Article  PubMed  Google Scholar 

  3. 3.

    Weigel, D. & Jürgens, G. Stem cells that make stems. Nature 14, 751–754 (2002).

    Article  Google Scholar 

  4. 4.

    Mansfield, S. G. & Briarty, L. G. Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can. J. Bot. 69, 461–476 (1991).

    Article  Google Scholar 

  5. 5.

    Jürgens, G. & Mayer, U. in A Colour Atlas of Developing Embryos (ed. Bard, J. B. L.) 7–21 (Wolfe Publishing, London, 1994).

  6. 6.

    Yoshida, S. et al. Genetic control of plant development by overriding a geometric division rule. Dev. Cell 29, 75–87 (2014).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Gooh, K. et al. Live-cell imaging and optical manipulation of Arabidopsis early embryogenesis. Dev. Cell 34, 242–251 (2015).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Palovaara, J., de Zeeuw, T. & Weijers, D. Tissue and organ initiation in the plant embryo: a first time for everything. Annu. Rev. Cell Dev. Biol. 32, 47–75 (2016).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Kerk, N. M., Ceserani, T., Tausta, S. L., Sussex, I. M. & Nelson, T. M. Laser capture microdissection of cells from plant tissues. Plant Physiol 132, 27–35 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Belmonte, M. F. et al. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc. Natl Acad. Sci. USA 110, E435–E444 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    de Vega-Bartol, J. J. et al. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster. BMC Plant Biol. 13, 123 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Venglat, P. et al. Gene expression profiles during embryo development in Brassica napus. Plant Breeding 132, 514–522 (2013).

    CAS  Google Scholar 

  13. 13.

    Chen, J. et al. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol. 166, 252–264 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Itoh, J.-I. et al. Genome-wide analysis of spatiotemporal gene expression patterns during early embryogenesis in rice. Development 143, 1217–1227 (2016).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Casson, S., Spencer, M., Walker, K. & Lindsey, K. Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J. 42, 111–123 (2005).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Spencer, M. W. B., Casson, S. A. & Lindsey, K. Transcriptional profiling of the Arabidopsis embryo. Plant Physiol. 143, 924–940 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Le, B. H. et al. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc. Natl Acad. Sci. USA 107, 8063–8070 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Xiang, D. et al. Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. Plant Physiol. 156, 346–356 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Autran, D. et al. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145, 707–719 (2011).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Nodine, M. D. & Bartel, D. P. Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 482, 94–97 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Nodine, M. D. & Bartel, D. P. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev. 24, 2678–2692 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Birnbaum, K. et al. A gene expression map of the Arabidopsis root. Science 302, 1956–1960 (2003).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Zhang, C., Barthelson, R. A., Lambert, G. M. & Galbraith, D. W. Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol. 147, 30–40 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Zanetti, M. E., Chang, I.-F., Gong, F., Galbraith, D. W. & Bailey-Serres, J. Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol. 138, 624–635 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Mustroph, A. et al. Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc. Natl Acad. Sci USA 106, 18843–18848 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Deal, R. B. & Henikoff, S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18, 1030–1040 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lin, S.-Y. et al. Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. Plant Cell 26, 602–618 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Slane, D. Cell type-specific transcriptome analysis in the early Arabidopsis thaliana embryo. Development 141, 4831–4840 (2014).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Yadav, R. K., Tavakkoli, M., Xie, M., Girke, T. & Reddy, G. V. A high-resolution gene expression map of the Arabidopsis shoot meristem stem cell niche. Development 141, 2735–2744 (2014).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Adrian, J. et al. Transcriptome dynamics of the stomatal lineage: Birth, amplification, and termination of a self-renewing population. Dev. Cell 33, 107–118 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Antoniadi, I. et al. Cell-type-specific cytokinin distribution within the Arabidopsis primary root apex. Plant Cell 27, 1955–1967 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Vragović, K. et al. Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation. Proc. Natl Acad. Sci. USA 112, 923–928 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Palovaara, J., Saiga, S. & Weijers, D. Transcriptomics approaches in the early Arabidopsis embryo. Trends Plant Sci. 18, 514–521 (2013).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Foley, S. W. et al. A global view of RNA–protein interactions identifies post-transcriptional regulators of root hair cell fate. Dev. Cell 41, 204–220 (2017).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Park, K. et al. DNA demethylation is initiated in the central cells of Arabidopsis and rice. Proc. Natl Acad. Sci. USA 113, 15138–15143 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Moreno-Romero, J., Santos-González, J., Hennig, L. & Köhler, C. Applying the INTACT method to purify endosperm nuclei and to generate parental-specific epigenome profiles. Nat. Protoc. 12, 238–254 (2017).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Ron, M. et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 166, 455–469 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Henry, G. L., Davis, F. P., Picard, S. & Eddy, S. R. Cell type-specific genomics of Drosophila neurons. Nucleic Acids Res. 40, 9691–9704 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Steiner, F. A., Talbert, P. B., Kasinathan, S., Deal, R. B. & Henikoff, S. Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res. 22, 766–777 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Amin, N. M. et al. Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). Development 141, 962–973 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ueda, M., Zhang, Z. & Laux, T. Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polarity to embryo development. Dev. Cell 20, 264–270 (2011).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Wysocka-Diller, J. W., Helariutta, Y., Fukaki, H., Malamy, J. E. & Benfey, P. N. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127, 595–603 (2000).

    CAS  PubMed  Google Scholar 

  43. 43.

    Beckett, D., Kovaleva, E. & Schatz, P. J. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Deal, R. B. & Henikoff, S. The intact method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat. Protoc. 6, 56–68 (2011).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Weijers, D. et al. An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128, 4289–4299 (2001).

    CAS  PubMed  Google Scholar 

  46. 46.

    Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Hocine, S., Singer, R. H. & Grünwald, D. RNA processing and export. Cold Spring Harb. Perspect. Biol. 2, a000752 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Barthelson, R. A., Lambert, G. M., Vainer, C., Lynch, R. M. & Gailbraith, D. W. Comparison of the contributions of the nuclear and cytosplasmic compartments to global gene expression in human cells. BMC Genom. 8, 340 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Grindberg, R. V. et al. RNA-sequencing from single nuclei. Proc. Natl Acad. Sci. USA 110, 19802–19807 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Clément-Ziza, M. et al. Evaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profiling. BMC Genom. 10, 246 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Morse, A. M., Carballo, V., Baldwin, D. A., Taylor, C. G. & McIntyre, L. M. Comparison between NuGEN’s WT-OVATION PICO and One-Direct Amplification Systems. J. Biomol. Tech. 21, 141–147 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Lamesch, P. et al. Using the Arabidopsis information resource (TAIR) to find information about Arabidopsis genes. Curr. Protoc. Bioinform. 30, 1.11.1–1.11.51 (2002).

    Google Scholar 

  53. 53.

    Schon, M. A. & Nodine, M. D. Widespread contamination of Arabidopsis embryo and endosperm transcriptome data sets. Plant Cell 29, 608–617 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Khan, D. et al. Transcriptome atlas of the Arabidopsis funiculus – a study of maternal seed subregions. Plant J. 82, 41–53 (2015).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Liu, Y. et al. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis. Proc. Natl Acad. Sci. USA 112, 12432–12437 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Radoeva, T., ten Hove, C. A., Saiga, S. & Weijers, D. Molecular characterization of Arabidopsis GAL4/UAS enhancer trap lines identifies novel cell type-specific promoters. Plant Physiol. 171, 1169–1181 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Schlereth, A. et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464, 913–916 (2010).

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    De Rybel, B. et al. A BHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev. Cell 24, 426–437 (2013).

    Article  PubMed  Google Scholar 

  60. 60.

    De Rybel, B. et al. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345, 1255215 (2014).

    Article  PubMed  Google Scholar 

  61. 61.

    Crawford, B. C. W. et al. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347, 655–659 (2015).

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Clough, S. J. & Bent, A. F. Floral dip: A simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    De Rybel, B. et al. A versatile set of ligation-independent cloning vectors for functional studies in plants. Plant Physiol. 156, 1292–1299 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Wendrich, J. R., Liao, C. Y., van den Berg, W. A., De Rybel, R. & Weijers, D. Ligation-independent cloning for plant research. Methods Mol. Biol. 1284, 421–431 (2015).

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Llavata-Peris, C., Lokerse, A., Möller, B., De Rybel, B. & Weijers, D. in Plant Organogenesis: Methods and Protocols (ed. De Smet, I.) 137–148 (Humana Press, Totowa, New Jersey, 2013).

  66. 66.

    Raissig, M. T., Gagliardini, V., Jaenisch, J., Grossniklaus, U. & Baroux, C. Efficient and rapid isolation of early-stage embryos from Arabidopsis thaliana seeds. J. Vis. Exp 76, e50371 (2013).

    Google Scholar 

  67. 67.

    Lin, K. et al. MADMAX – Management and analysis database for multiple ~omics experiments. J Integr. Bioinform. 8, 160 (2011).

    Article  PubMed  Google Scholar 

  68. 68.

    Dai, M. et al. Evolving gene/transcript definitions significantly alter the interpretation of genechip data. Nucleic Acids Res. 33, e175 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Article  PubMed  Google Scholar 

  70. 70.

    Sartor, M. A. et al. Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments. BMC Bioinform. 7, 1–17 (2006).

    Article  Google Scholar 

  71. 71.

    Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S. & Smyth, G. K. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann. App. Stat. 10, 946–963 (2016).

    Article  Google Scholar 

  72. 72.

    Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Orlando, D. A., Brady, S. M., Koch, J. D., Dinneny, J. R., Benfey, P. N. in Plant Systems Biology (ed. Belostotsky, A. D.) 57–77 (Humana Press, Totowa, New Jersey, 2009).

  74. 74.

    Du, Z., Zhou, X., Ling, Y., Zhang, Z. & Su, Z. agrigo: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38, W64–W70 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Palaniswamy, S. K. et al. AGRIS and AtRegNet. a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol. 140, 818–829 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Saiga, S. et al. The Arabidopsis OBERON1 and OBERON2 genes encode plant homeodomain finger proteins and are required for apical meristem maintenance. Development 135, 1751–1759 (2008).

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, 1–14 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank T. Laux, R. Deal and S. Henikoff for sharing materials. Further, the authors thank the students M. Geerlings, D. van der Plaat, E. Asamoah Gyimah, M. Goranova, A. Kuhn, L. van der Bent, I. Papakosta, S. Thomaidou, S. Hedžet and K. Heidemeyer for their contributions. This study was supported by the Federation of European Biochemical Societies (FEBS) (J.P.), ERA-CAPS project EURO-PEC (grant number 849.13.006) and the European Research Council (ERC Starting Grant ‘CELLPATTERN’; contract number 281573 to D.W.).

Author information

Affiliations

Authors

Contributions

D.W. conceived the study; J.P., S.S., J.R.W. and D.W. designed research; S.S. generated INTACT lines; J.P. and N.v.W.H. optimized and adapted experimental set-up; J.P., S.S. and J.R.W. performed INTACT; F.H. and J.P. performed nuclear versus cellular RNA comparison; M.B., G.J.H. and J.P. performed transcriptomic profiling and analysed data with support from S.M.; J.P., S.S., J.R.W., J.P.v.S. and J.S. validated expression patterns; J.P.v.S. and J.P. designed and developed the AlBERTO browser; J.P. and D.W. wrote the paper with input from all other authors.

Corresponding author

Correspondence to Dolf Weijers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41477-017-0077-6.

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Supplementary Tables 1–3, Supplementary References.

Life Sciences Reporting Summary

Supplementary Table 4

Linear correlation and residual analysis of nuclear and cellular whole-genome expression.

Supplementary Table 5

The atlas data set.

Supplementary Table 6

Comparison of seed tissue contamination in INTACT- and FANS-generated nuclear transcriptomes.

Supplementary Table 7

List of primers used for cloning and quantitative RT-PCR.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palovaara, J., Saiga, S., Wendrich, J.R. et al. Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo. Nature Plants 3, 894–904 (2017). https://doi.org/10.1038/s41477-017-0035-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing