Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Endogenous miRNA in the green alga Chlamydomonas regulates gene expression through CDS-targeting

Abstract

MicroRNAs (miRNAs) are 21–24-nucleotide RNAs present in many eukaryotes that regulate gene expression as part of the RNA-induced silencing complex. The sequence identity of the miRNA provides the specificity to guide the silencing effector Argonaute (AGO) protein to target mRNAs via a base-pairing process1. The AGO complex promotes translation repression and/or accelerated decay of this target mRNA2. There is overwhelming evidence both in vivo and in vitro that translation repression plays a major role3,4,5,6,7. However, there has been controversy about which of these three mechanisms is more significant in vivo, especially when effects of miRNA on endogenous genes cannot be faithfully represented by reporter systems in which, at least in metazoans, the observed repression vastly exceeds that typically observed for endogenous mRNAs8,9. Here, we provide a comprehensive global analysis of the evolutionarily distant unicellular green alga Chlamydomonas reinhardtii to quantify the effects of miRNA on protein synthesis and RNA abundance. We show that, similar to metazoan steady-state systems, endogenous miRNAs in Chlamydomonas can regulate gene expression both by destabilization of the mRNA and by translational repression. However, unlike metazoan miRNA where target site utilization localizes mainly to 3′ UTRs, in Chlamydomonas utilized target sites lie predominantly within coding regions. These results demonstrate the evolutionarily conserved mode of action for miRNAs, but details of the mechanism diverge between the plant and metazoan kingdoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ribosome profiling data.
Fig. 2: Distribution of octonucleotide target sites.
Fig. 3: miRNA downregulates gene expression primarily through mRNA destabilization by CDS targeting.
Fig. 4: Effects of miRNAs on TE and RA.

Similar content being viewed by others

References

  1. Bartel, D. P. MicroRNAs: target recognition and regulatory functions.Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ameres, S. L. & Zamore, P. D. Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell Biol. 14, 475–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Jonas, S. & Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Iwakawa, H. O. & Tomari, Y. The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol. 25, 651–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. 336, 233–237 (2012).

  7. Izaurralde, B. E. Breakers and blockers— miRNAs at work. Science 349, 380–382 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Eichhorn, S. W. et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56, 104–115 (2014).

  9. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Béthune, J., Artus-Revel, C. G. & Filipowicz, W. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep. 13, 716–723 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Djuranovic, S., Nahvi, A. & Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336, 237–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brodersen, P. & Voinnet, O. Target recognition and mode of action. Nat. Rev. Mol. Cell Biol. 10, 141–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Reis, R. S., Hart-Smith, G., Eamens, A. L., Wilkins, M. R. & Waterhouse, P. M. Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nat. Plants 1, 1–6 (2015).

    Google Scholar 

  15. Li, S. et al. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153, 562–574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Iwakawa, H. & Tomari, Y. Molecular insights into microRNA-mediated translational repression in plants. Mol. Cell 52, 591–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hendrickson, D. G. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, 25–29 (2009).

    Article  Google Scholar 

  20. Molnar, A., Schwach, F., Studholme, D. J., Thuenemann, E. C. & Baulcombe, D. C. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447, 1126–1129 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Valli, A. A. et al. Most microRNAs in the single-cell alga Chlamydomonas reinhardtii are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs. Genome Res. 26, 519–529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamasaki, T. et al. Complementarity to an miRNA seed region is sufficient to induce moderate repression of a target transcript in the unicellular green alga Chlamydomonas reinhardtii. Plant J. 76, 1045–1056 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Yamasaki, T., Kim, E.-J., Cerutti, H. & Ohama, T. Argonaute3 is a key player in miRNA-mediated target cleavage and translational repression in Chlamydomonas. Plant J. 85, 258–268 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Chung, B. Y. et al. The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis. RNA 21, 1731–1745 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewis, B. P., Shih, I., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, (2015).

  27. Schirle, N. T., Sheu-Gruttadauria, J. & MacRae, I. J. Structural basis for microRNA targeting. Science 346, 608–613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mallory, A. C. et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23, 3356–64 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao, X. et al. MicroRNAs modulate adaption to multiple abiotic stresses in Chlamydomonas reinhardtii. Sci. Rep. 6, 38228 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H. F. Crystal structure of a 70S ribosome–tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Qu, X. et al. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475, 118–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gerashchenko, M. V. & Gladyshev, V. N. Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42, e134 (2014).

  33. Gutteridge, A. et al. Nutrient control of eukaryote cell growth: a systems biology study in yeast. BMC Biol. 8, 68 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Marondedze, C. et al. A quantitative phosphoproteome analysis of cGMP-dependent cellular responses in Arabidopsis thaliana. Mol. Plant 9, 621–623 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Brosch, M., Yu, L., Hubbard, T. & Choudhary, J. Accurate and sensitive peptide identification with mascot percolator. J. Proteome Res. 8, 3176–3181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hardcastle, T. J. & Kelly, K. A. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinform. 11, 422 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bonnet, E., He, Y., Billiau, K. & van de Peer, Y. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26, 1566–1568 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Barlow for technical assistance and medium preparation; T.J. Hardcastle and B. Santos for technical bioinformatic support; A. Valli for providing the silencing mutants, and A. Molnar and A.E. Firth for discussions. This work was supported by a Balzan Prize award and the European Research Council Advanced Investigator Grant ERC-2013-AdG 340642 TRIBE (D.C.B). B.Y.-W.C. was supported by an EMBO long-term postdoctoral fellowship and a Sir Henry Wellcome Fellowship [096082]. D.C.B. is the Royal Society Edward Penley Abraham Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

B.Y.-W.C. and D.C.B. conceived and designed the research. B.Y.-W.C performed the experiments and analysed the data. M.J.D., A.J.G. and J.H. performed all the LC–MS/MS sample processing and iSPY analysis. B.Y.-W.C. and D.C.B. wrote the manuscript.

Corresponding authors

Correspondence to Betty Y-W. Chung or David C. Baulcombe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1-8, Supplementary tables 1-3

Life Sciences Reporting Summary

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, B.YW., Deery, M.J., Groen, A.J. et al. Endogenous miRNA in the green alga Chlamydomonas regulates gene expression through CDS-targeting. Nature Plants 3, 787–794 (2017). https://doi.org/10.1038/s41477-017-0024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0024-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing