Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the triose-phosphate/phosphate translocator reveals the basis of substrate specificity

Abstract

The triose-phosphate/phosphate translocator (TPT) catalyses the strict 1:1 exchange of triose-phosphate, 3-phosphoglycerate and inorganic phosphate across the chloroplast envelope, and plays crucial roles in photosynthesis. Despite rigorous study for more than 40 years, the molecular mechanism of TPT is poorly understood because of the lack of structural information. Here we report crystal structures of TPT bound to two different substrates, 3-phosphoglycerate and inorganic phosphate, in occluded conformations. The structures reveal that TPT adopts a 10-transmembrane drug/metabolite transporter fold. Both substrates are bound within the same central pocket, where conserved lysine, arginine and tyrosine residues recognize the shared phosphate group. A structural comparison with the outward-open conformation of the bacterial drug/metabolite transporter suggests a rocker-switch motion of helix bundles, and molecular dynamics simulations support a model in which this rocker-switch motion is tightly coupled to the substrate binding, to ensure strict 1:1 exchange. These results reveal the unique mechanism of sugar phosphate/phosphate exchange by TPT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional characterization of GsGPT.
Fig. 2: Overall structure and substrate recognition of GsGPT.
Fig. 3: Comparison of the pPT subtypes.
Fig. 4: Occluded structure and alternating-access.
Fig. 5: Molecular dynamics simulations.
Fig. 6: Proposed model for the strict 1:1 exchange.

Similar content being viewed by others

References

  1. Bassham, J. A. Photosynthetic carbon metabolism. Proc. Natl Acad. Sci. USA 68, 2877–2882 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stocking, C. R. & Larson, S. A chloroplast cytoplasmic shuttle and the reduction of extraplastid NAD. Biochem. Biophys. Res. Commun. 37, 278–282 (1969).

    Article  CAS  PubMed  Google Scholar 

  3. Heldt, H. W. & Rapley, L. Specific transport of inorganic phosphate, 3-phosphoglycerate and dihydroxyacetonephosphate, and of dicarboxylates across the inner membrane of spinach chloroplasts. FEBS Lett. 10, 143–148 (1970).

    Article  CAS  PubMed  Google Scholar 

  4. Flügge, U. I. et al. The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J. 8, 39–46 (1989).

    PubMed  PubMed Central  Google Scholar 

  5. Weber, A. P. & Linka, N. Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. Annu. Rev. Plant Biol. 62, 53–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Flügge, U. I. et al. The major chloroplast envelope polypeptide is the phosphate translocator and not the protein import receptor. Nature 353, 364–367 (1991).

    Article  Google Scholar 

  7. Knappe, S., Flügge, U. I. & Fischer, K. Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol. 131, 1178–1190 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weber, A. P., Linka, M. & Bhattacharya, D. Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot. Cell 5, 609–612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fischer, K. et al. A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9, 453–462 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kammerer, B. et al. Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10, 105–117 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eicks, M., Maurino, V., Knappe, S., Flügge, U. I. & Fischer, K. The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol. 128, 512–522 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weber, A. P. & Bräutigam, A. The role of membrane transport in metabolic engineering of plant primary metabolism. Curr. Opin. Biotechnol. 24, 256–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y., Long, S. P. & Zhu, X. G. Elements required for an efficient NADP-malic enzyme type C4 photosynthesis. Plant Physiol. 164, 2231–2246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, L. et al. Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. Plant Biotechnol. J. 6, 453–464 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Cho, M. H., Jang, A., Bhoo, S. H., Jeon, J. S. & Hahn, T. R. Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants. Photosynth. Res. 111, 261–268 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Mullin, K. A. et al. Membrane transporters in the relict plastid of malaria parasites. Proc. Natl Acad. Sci. USA 103, 9572–9577 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lim, L. & McFadden, G. I. The evolution, metabolism and functions of the apicoplast. Philos. Trans. R. Soc. Lond. B. Biol. Sci 365, 749–763 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brooks, C. F. et al. The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival.Cell Host Microbe 7, 62–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Banerjee, T., Jaijyan, D. K., Surolia, N., Singh, A. P. & Surolia, A. Apicoplast triose phosphate transporter (TPT) gene knockout is lethal for Plasmodium. Mol. Biochem. Parasitol. 186, 44–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Lim, L., Linka, M., Mullin, K. A., Weber, A. P. & McFadden, G. I. The carbon and energy sources of the non-photosynthetic plastid in the malaria parasite. FEBS Lett. 584, 549–554 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Facchinelli, F. & Weber, A. P. The metabolite transporters of the plastid envelope: an update. Front. Plant Sci. 2, 50 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hadley, B. et al. Structure and function of nucleotide sugar transporters: Current progress. Comput. Struct. Biotechnol. J. 10, 23–32 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Orellana, A., Moraga, C., Araya, M. & Moreno, A. Overview of nucleotide sugar transporter gene family functions across multiple species. J. Mol. Biol. 428, 3150–3165 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Ishida, N. & Kawakita, M. Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch. 447, 768–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Reyes, F. & Orellana, A. Golgi transporters: opening the gate to cell wall polysaccharide biosynthesis. Curr. Opin. Plant Biol. 11, 244–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Heldt, H. W. Three decades in transport business: studies of metabolite transport in chloroplasts - a personal perspective. Photosynth. Res. 73, 265–272 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Linka, M., Jamai, A. & Weber, A. P. Functional characterization of the plastidic phosphate translocator gene family from the thermo-acidophilic red alga Galdieria sulphuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae. Plant Physiol. 148, 1487–1496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Landau, E. M. & Rosenbusch, J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl Acad. Sci. USA 93, 14532–14535 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jack, D. L., Yang, N. M. & Saier, M. H. Jr. The drug/metabolite transporter superfamily. Eur. J. Biochem 268, 3620–3639 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Tsuchiya, H. et al. Structural basis for amino acid export by DMT superfamily transporter YddG. Nature 534, 417–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Weber, A. P., Schwacke, R. & Flügge, U. I. Solute transporters of the plastid envelope membrane. Annu. Rev. Plant Biol. 56, 133–164 (2005).

    Article  PubMed  Google Scholar 

  32. Flügge, U. I. Hydrodynamic properties of the Triton X-100-solubilized chloroplast phosphate translocator. BBA-Biomembranes 815, 299–305 (1985).

    Article  Google Scholar 

  33. Gross, A., Bruckner, G., Heldt, H. W. & Flügge, U. I. Comparison of the kinetic properties, inhibition and labelling of the phosphate translocators from maize and spinach mesophyll chloroplasts. Planta 180, 262–271 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Nozawa, A. et al. A Cell-free translation and proteoliposome reconstitution system for functional analysis of plant solute transporters. Plant Cell Physiol. 48, 1815–1820 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Hayashi, Y., Matsui, H. & Takagi, T. Membrane protein molecular weight determined by low-angle laser light-scattering photometry coupled with high-performance gel chromatography. Methods Enzymol. 172, 514–528 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Caffrey, M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu. Rev. Biophys. 38, 29–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foadi, J. et al. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr. D 69, 1617–1632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Javanainen, M. Universal method for embedding proteins into complex lipid bilayers for molecular dynamics simulations. J. Chem. Theory Comput. 10, 2577–2582 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  PubMed  Google Scholar 

  47. Nose, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1984).

    Article  CAS  Google Scholar 

  48. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  49. Parrinello, M. & Rahman, A. Polymorphic transitions in single-crystals – a new molecular-dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  CAS  Google Scholar 

  50. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  CAS  Google Scholar 

  51. Darden, T., York, D. & Pedersen, L. Particle Mesh Ewald – an N.Log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Nishimasu for comments on the manuscript; A. Kurabayashi, K. Ogomori, W. Shihoya and R. Taniguchi for technical assistance; and the beam-line scientists at SPring-8 BL32XU for assistance in data collection. The diffraction experiments were performed at SPring-8 BL32XU (proposals 2015B0119, 2015B2057 and 2016B2527). Computations of MD simulations were partially performed on the NIG supercomputer at ROIS National Institute of Genetics. This work was supported by grants from the Platform for Drug Discovery, Informatics and Structural Life Science by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), JSPS KAKENHI (Grant Nos. 24227004, 25291011), the FIRST program, JST PRESTO; and a Grant-in-Aid for JSPS Fellows (Grant No. 16J07405).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. designed the research, expressed, purified and crystallized GsGPT, determined the structures and performed biochemical assays. Y.L., K.Y. and K.H. collected and processed diffraction data. T.N. and K.K. assisted with the structure determination. M.T. performed the molecular dynamics simulations. A.M. prepared G. sulphuraria cDNA. S.N. and K.T. performed the SEC-MALLS experiment. Y.L., T.N., R.I. and O.N. wrote the manuscript with help from all authors. O.N. directed and supervised all of the research.

Corresponding author

Correspondence to Osamu Nureki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–11, Supplementary Tables 1 and 2

Reporting Checklist

Reporting Checklist file

Supplementary Data 1

Multiple sequence alignment between human NSTs, Arabidopsis NST/TPT members and GsGPT

Supplementary Video 1

Conformational change of GsGPT

Supplementary Video 2

Molecular dynamics simulation of GsGPT without Pi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Nishizawa, T., Takemoto, M. et al. Structure of the triose-phosphate/phosphate translocator reveals the basis of substrate specificity. Nature Plants 3, 825–832 (2017). https://doi.org/10.1038/s41477-017-0022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0022-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing