Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanical regulation of organ asymmetry in leaves

How appendages, such as plant leaves or animal limbs, develop asymmetric shapes remains a fundamental question in biology. Although ongoing research has revealed the genetic regulation of organ pattern formation, how gene activity ultimately directs organ shape remains unclear. Here, we show that leaf dorsoventral (adaxial-abaxial) polarity signals lead to mechanical heterogeneity of the cell wall, related to the methyl-esterification of cell-wall pectins in tomato and Arabidopsis. Numerical simulations predicate that mechanical heterogeneity is sufficient to produce the asymmetry seen in planar leaves. Experimental tests that alter pectin methyl-esterification, and therefore cell wall mechanical properties, support this model and lead to polar changes in gene expression, suggesting the existence of a feedback mechanism for mechanical signals in morphogenesis. Thus, mechanical heterogeneity within tissue may underlie organ shape asymmetry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamic changes of the asymmetry of the elastic modulus of epidermal cell walls.
Fig. 2: Methyl-esterification of cell wall pectin in leaf primordia.
Fig. 3: A conceptual mechanical model is sufficient to predict organ asymmetry formation.
Fig. 4: Dynamics of cell wall pectin methyl-esterification are critical for leaf polarity patterning in tomato.
Fig. 5: Dynamics of cell wall pectin methyl-esterification are critical for leaf polarity patterning in Arabidopsis.
Fig. 6: Epidermal restriction is necessary for polarity patterning.

Similar content being viewed by others

References

  1. Sablowski, R. Coordination of plant cell growth and division: collective control or mutual agreement? Curr. Opin. Plant Biol. 34, 54–60 (2016).

    Article  PubMed  CAS  Google Scholar 

  2. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Sampathkumar, A., Yan, A., Krupinski, P. & Meyerowitz, E. M. Physical forces regulate plant development and morphogenesis. Curr. Biol. 24, R475–R483 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Louveaux, M., Julien, J. D., Mirabet, V., Boudaoud, A. & Hamant, O. Cell division plane orientation based on tensile stress in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 113, E4294–E4303 (2016).

    Article  PubMed  CAS  Google Scholar 

  5. Sampathkumar, A. et al. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 3, e01967 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Peaucelle, A. et al. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21, 1720–1726 (2011).

    Article  PubMed  CAS  Google Scholar 

  7. Hervieux, N. et al. A mechanical feedback restricts sepal growth and shape in Arabidopsis. Curr. Biol. 26, 1019–1028 (2016).

    Article  CAS  Google Scholar 

  8. Braam, J. In touch: plant responses to mechanical stimuli. New Phytol. 165, 373–389 (2005).

    Article  PubMed  Google Scholar 

  9. Gibson, W. T. et al. Control of the mitotic cleavage plane by local epithelial topology. Cell 144, 427–438 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Boudon, F. et al. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput. Biol. 11, e1003950 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cosgrove, D. J. Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol. 124, 1–23 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. Cosgrove, D. J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. Wolf, S., Hematy, K. & Hofte, H. Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 63, 381–407 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Peaucelle, A., Braybrook, S. & Hofte, H. Cell wall mechanics and growth control in plants: the role of pectins revisited. Front. Plant. Sci. 3, 121 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Peaucelle, A. et al. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr. Biol. 18, 1943–1948 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. Ali, O., Mirabet, V., Godin, C. & Traas, J. Physical models of plant development. Annu. Rev. Cell Dev. Biol. 30, 59–78 (2014).

    Article  PubMed  CAS  Google Scholar 

  17. Waites, R. & Hudson, A. phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121, 2143–2154 (1995).

    CAS  Google Scholar 

  18. Barton, M. K. Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev. Biol. 341, 95–113 (2010).

    Article  PubMed  CAS  Google Scholar 

  19. Bowman, J. L. & Floyd, S. K. Patterning and polarity in seed plant shoots. Annu. Rev. Plant Biol. 59, 67–88 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. Braybrook, S. A. & Kuhlemeier, C. How a plant builds leaves. Plant Cell 22, 1006–1018 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Efroni, I., Eshed, Y. & Lifschitz, E. Morphogenesis of simple and compound leaves: a critical review. Plant Cell 22, 1019–1032 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Husbands, A. Y., Chitwood, D. H., Plavskin, Y. & Timmermans, M. C. Signals and prepatterns: new insights into organ polarity in plants. Genes Dev. 23, 1986–1997 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Xu, L., Yang, L. & Huang, H. Transcriptional, post-transcriptional and post-translational regulations of gene expression during leaf polarity formation. Cell Res. 17, 512–519 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. Emery, J. F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. Iwakawa, H. et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol. 43, 467–478 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. Siegfried, K. R. et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126, 4117–4128 (1999).

    PubMed  CAS  Google Scholar 

  27. Sussex, I. M. Experiments on the cause of dorsiventrality in leaves. Nature 167, 651–652 (1951).

    Article  PubMed  CAS  Google Scholar 

  28. Qi, J. et al. Auxin depletion from leaf primordia contributes to organ patterning. Proc. Natl Acad. Sci. USA 111, 18769–18774 (2014).

    Article  PubMed  CAS  Google Scholar 

  29. Braybrook, S. A. & Peaucelle, A. Mechano-chemical aspects of organ formation in Arabidopsis thaliana: the relationship between auxin and pectin. PLoS ONE 8, e57813 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cleland, R. Cell wall extension. Annu. Rev. Plant Physiol. 22, 197–222 (1971).

    Article  CAS  Google Scholar 

  31. Milani, P. et al. In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J. 67, 1116–1123 (2011).

    Article  PubMed  CAS  Google Scholar 

  32. Verhertbruggen, Y., Marcus, S. E., Haeger, A., Ordaz-Ortiz, J. J. & Knox, J. P. An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr. Res. 344, 1858–1862 (2009).

    Article  PubMed  CAS  Google Scholar 

  33. Clausen, M. H., Willats, W. G. & Knox, J. P. Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr. Res. 338, 1797–1800 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. Liners, F., Thibault, J. F. & Van Cutsem, P. Influence of the degree of polymerization of oligogalacturonates and of esterification pattern of pectin on their recognition by monoclonal antibodies. Plant Physiol. 99, 1099–1104 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Peaucelle, A., Wightman, R. & Hofte, H. The control of growth symmetry breaking in the Arabidopsis hypocotyl. Curr. Biol. 25, 1746–1752 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. Hayashi, K. et al. Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. ACS Chem. Biol. 7, 590–598 (2012).

    Article  PubMed  CAS  Google Scholar 

  37. Krogan, N. T. & Berleth, T. A dominant mutation reveals asymmetry in MP/ARF5 function along the adaxial-abaxial axis of shoot lateral organs. Plant Signal. Behav. 7, 940–943 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. Abley, K. et al. An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development 140, 2061–2074 (2013).

    Article  PubMed  CAS  Google Scholar 

  40. Kuchen, E. E. et al. Generation of leaf shape through early patterns of growth and tissue polarity. Science 335, 1092–1096 (2012).

    Article  PubMed  CAS  Google Scholar 

  41. Lawrence, P. A., Struhl, G. & Casal, J. Planar cell polarity: one or two pathways? Nat. Rev. Genet. 8, 555–563 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Stopper, G. F. & Wagner, G. P. Of chicken wings and frog legs: a smorgasbord of evolutionary variation in mechanisms of tetrapod limb development. Dev. Biol. 288, 21–39 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. Kennaway, R., Coen, E., Green, A. & Bangham, A. Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. PLoS Comput. Biol. 7, e1002071 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Merks, R. M., Guravage, M., Inze, D. & Beemster, G. T. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiol. 155, 656–666 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kierzkowski, D. et al. Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335, 1096–1099 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Juge, N. Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci. 11, 359–367 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. Tian, C. et al. An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation. Mol. Syst. Biol. 10, 755 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Talbert, P. B., Adler, H. T., Parks, D. W. & Comai, L. The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 121, 2723–2735 (1995).

    PubMed  CAS  Google Scholar 

  49. Nakata, M. et al. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 24, 519–535 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sessions, A., Weigel, D. & Yanofsky, M. F. The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J. 20, 259–263 (1999).

    Article  PubMed  CAS  Google Scholar 

  51. Coen, E., Rolland-Lagan, A. G., Matthews, M., Bangham, J. A. & Prusinkiewicz, P. The genetics of geometry. Proc. Natl Acad. Sci. USA 101, 4728–4735 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. Wang, J., Lu, D., Mao, D. & Long, M. Mechanomics: an emerging field between biology and biomechanics. Protein Cell 5, 518–531 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kutschera, U. & Niklas, K. J. The epidermal-growth-control theory of stem elongation: an old and a new perspective. J. Plant Physiol. 164, 1395–1409 (2007).

    Article  PubMed  CAS  Google Scholar 

  54. Reinhardt, D., Frenz, M., Mandel, T. & Kuhlemeier, C. Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato. Development 132, 15–26 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. McConnell, J. R. & Barton, M. K. Leaf polarity and meristem formation in Arabidopsis. Development 125, 2935–2942 (1998).

    PubMed  CAS  Google Scholar 

  56. Semiarti, E. et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128, 1771–1783 (2001).

    PubMed  CAS  Google Scholar 

  57. Heisler, M. G. et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899–1911 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. Wang, Y. et al. The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis. Plant Cell 26, 2055–2067 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Takada, S. & Jurgens, G. Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo. Development 134, 1141–1150 (2007).

    Article  PubMed  CAS  Google Scholar 

  60. Shapiro, B. E., Tobin, C., Mjolsness, E. & Meyerowitz, E. M. Analysis of cell division patterns in the Arabidopsis shoot apical meristem. Proc. Natl Acad. Sci. USA 112, 4815–4820 (2015).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank K.-I. Hayashi (Okayama University of Science) for providing auxinole, N. Li (Institute of Mechanics, Chinese Academy of Sciences) and Z. Huang (Bruker Nano Surfaces Business, Beijing) for assistance with AFM measurement, the Core Facilities of Life Sciences of Peking University for use of the TEM and S.-N. Bai (Peking University) and S. Poethig (University of Pennsylvania) for discussions. This work was supported by National Natural Science Foundation of China grants 31430010 and 31627804, National Basic Research Program of China (973 Program) grants 2014CB943500 and 2011CB710900, National Key Research and Development Program of China grant 2016YFA0501601, the National Program for Support of Top-Notch Young Professionals, China Postdoctoral Science Foundation grant 2015M570171 and the State Key Laboratory of Plant Genomics.

Author information

Authors and Affiliations

Authors

Contributions

Y.J. conceived and designed experiments. J.Q. and B.W. carried out most of the experiments. S.F., S.L. and M.L. carried out numerical simulations. C.G. contributed to phenotypic analysis. X.Z. and D.Q. contributed to AFM experiments. Y.H. performed TEM experiments. Y.Z. and C.L. provided materials/reagents. Y.J. and M.L. wrote the manuscript, with contributions from all the authors.

Corresponding authors

Correspondence to Mian Long or Yuling Jiao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–11, Supplementary Table 1, Supplementary Table 3, Supplementary Table 4, Supplementary Video Legends, Supplementary Methods, Supplementary References.

Life Sciences Reporting Summary

Supplementary Table 2

Raw AFM measurements for Figure 1 and Supplementary Figures 4–6.

Supplementary Source Code

Supplementary source code.

Supplementary Video 1

Normal leaf growth, related to Figure 2i–l.

Supplementary Video 2

Hastened adaxial cell wall loosening leads to reduced asymmetry, related to Figure 3c.

Supplementary Video 3

Two-domain partition leads to reduced asymmetry, related to Figure 3d.

Supplementary Video 4

Reduced epidermal restriction leads to reduced asymmetry, related to Figure 6a.

Supplementary Video 5

Enhanced epidermal restriction leads to reduced asymmetry, related to Figure 6b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Wu, B., Feng, S. et al. Mechanical regulation of organ asymmetry in leaves. Nature Plants 3, 724–733 (2017). https://doi.org/10.1038/s41477-017-0008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0008-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing