Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Distinct genetic architectures for phenotype means and plasticities in Zea mays

Abstract

Phenotypic plasticity describes the phenotypic variation of a trait when a genotype is exposed to different environments. Understanding the genetic control of phenotypic plasticity in crops such as maize is of paramount importance for maintaining and increasing yields in a world experiencing climate change. Here, we report the results of genome-wide association analyses of multiple phenotypes and two measures of phenotypic plasticity in a maize nested association mapping (US-NAM) population grown in multiple environments and genotyped with ~2.5 million single-nucleotide polymorphisms. We show that across all traits the candidate genes for mean phenotype values and plasticity measures form structurally and functionally distinct groups. Such independent genetic control suggests that breeders will be able to select semi-independently for mean phenotype values and plasticity, thereby generating varieties with both high mean phenotype values and levels of plasticity that are appropriate for the target performance environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Quartile coefficients of dispersion for the linear and non-linear plasticities of 23 phenotypes.
Fig. 2: The mean percentage variance explained by genome-wide SNPs hierarchically assigned to annotation categories.
Fig. 3: Plasticity-associated loci are pervasive across phenotypes.
Fig. 4: Candidate genes for mean phenotypes and plasticity are structurally and functionally distinct.

References

  1. 1.

    West-Eberhard, M. J. Developmental plasticity and evolution (Oxford University Press, New York, 2003).

  2. 2.

    Pigliucci, M. Evolution of phenotypic plasticity: where are we going now? Trends Ecol. Evol. 20, 481–486 (2005).

    Article  Google Scholar 

  3. 3.

    Allard, R. W. & Bradshaw, A. D. Implications of genotype-environmental interactions in applied plant breeding. Crop Sci. 4, 503–508 (1964).

    Article  Google Scholar 

  4. 4.

    Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115–155 (1965).

    Google Scholar 

  5. 5.

    Alexandratos, N. & Bruinsma, J. World agriculture towards 2015/2030: The 2012 Revision (FAO, Rome, 2012).

  6. 6.

    IPCC Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S. et al.) (Cambridge Univ. Press, Cambridge, (2007).

  7. 7.

    Bradshaw, A. D. Unvravelling phenotypic plasticity – why should we bother? New Phytol. 170, 644–8 (2006).

    Article  Google Scholar 

  8. 8.

    Ceccarelli, S. Wide adaptation: how wide? Euphytica 40, 197–205 (1989).

    Google Scholar 

  9. 9.

    Wang, Y. et al. First insights into the genotype-phenotype map of phenotypic stability in rye. J. Exp. Bot. 66, 3275–3284 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Huang, M. et al. Genomic selection for wheat traits and trait stability. Theor. Appl. Genet. 129, 1697–1710 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Gillespie, J. H. & Turelli, M. Genotype-environment interactions and the maintenance of polygenic variation. Genetics 121, 129–38 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Via, S. & Lande, R. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39, 505–522 (1985).

    Article  Google Scholar 

  13. 13.

    Via, S. Adaptive phenotypic plasticity: target or by-product of selection in a variable environment? Am. Nat. 142, 352–365 (1993).

    CAS  Article  Google Scholar 

  14. 14.

    Scheiner, S. M. & Lyman, R. F. The genetics of phenotypic plasticity: I. Heritability. J. Evol. Biol. 2, 95–107 (1989).

    Article  Google Scholar 

  15. 15.

    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).

    Article  Google Scholar 

  16. 16.

    Wu, R. The detection of plasticity genes in heterogeneous environments. Evolution 52, 967–977 (1998).

    Article  Google Scholar 

  17. 17.

    Ungerer, M. C., Halldorsdottir, S. S., Purugganan, M. D. & Mackay, T. F. C. Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. Genetics 165, 353–365 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Kraakman, A. T. W., Niks, R. E., Van Den Berg, P. M. M. M., Stam, P. & Van Eeuwijk, F. A. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168, 435–446 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    Emebiri, L. C. & Moody, D. B. Heritable basis for some genotype-environment stability statistics: inferences from QTL analysis of heading date in two-rowed barley. Field Crop. Res. 96, 243–251 (2006).

    Article  Google Scholar 

  20. 20.

    Lacaze, X., Hayes, P. M. & Korol, A. Genetics of phenotypic plasticity: QTL analysis in barley, Hordeum vulgare. Heredity 102, 163–173 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    FAOSTAT Crops (FAO, 2015); at http://faostat3.fao.org/browse/Q/QC/E

  22. 22.

    Chia, J.-M. et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 44, 803–807 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Yan, J. et al. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE 4, e8451 (2009).

    Article  Google Scholar 

  24. 24.

    Finlay, K. W. & Wilkinson, G. N. The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 14, 742 (1963).

    Article  Google Scholar 

  25. 25.

    Su, G. et al. Bayesian analysis of the linear reaction norm model with unknown covariates. J. Anim. Sci. 84, 1651–1657 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    Lian, L. & de los Campos, G. FW: An R package for Finlay-Wilkinson Regression that incorporates genomic/pedigree information and covariance structures between environments. Genes Genomes Genet. 6, 589–597 (2016).

    Google Scholar 

  27. 27.

    Fripp, Y. J. & Caten, C. E. Genotype-environmental interactions in Schizophyllum commune: III. The relationship between mean expression and sensitivity to change in environment. Heredity 30, 341–349 (1973).

    CAS  Article  Google Scholar 

  28. 28.

    Lin, C. S. & Binns, M. R. A method of analyzing cultivar x location x year experiments: A new stability parameter. Theor. Appl. Genet. 76, 425–430 (1988).

    CAS  Article  Google Scholar 

  29. 29.

    Lee, E. A. et al. Involvement of year-to-year variation in thermal time, solar radiation and soil available moisture in genotype-by-environment effects in maize. Crop Sci. 56, 2180–2192 (2016).

    Article  Google Scholar 

  30. 30.

    Yu, J., Holland, J. B., McMullen, M. D. & Buckler, E. S. Genetic design and statistical power of nested association mapping in maize. Genetics 178, 539–551 (2008).

    Article  Google Scholar 

  31. 31.

    Buckler, E. S. et al. The genetic architecture of maize flowering time. Science 325, 714–718 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Rodgers-Melnick, E., Vera, D. L., Bass, H. W. & Buckler, E. S. Open chromatin reveals the functional maize genome. Proc. Natl Acad. Sci. USA 113, E3177–E3184 (2016)

    CAS  Article  Google Scholar 

  33. 33.

    Liu, X., Huang, M., Fan, B., Buckler, E. S. & Zhang, Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 12, e1005767 (2016).

    Article  Google Scholar 

  34. 34.

    Wallace, J. G. et al. Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet. 10, e1004845 (2014).

    Article  Google Scholar 

  35. 35.

    Yilmaz, A. et al. GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol. 149, 171–80 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    Cubas, P., Lauter, N., Doebley, J. & Coen, E. The TCP domain: A motif found in proteins regulating plant growth and development. Plant J. 18, 215–222 (1999).

    CAS  Article  Google Scholar 

  37. 37.

    Zhu, G. et al. PPIM: a protein-protein interaction database for maize. Plant Physiol. 170, 618–626 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Maere, S., Heymans, K. & Kuiper, M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448–3449 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Schnable, P. S. & Springer, N. M. Progress toward understanding heterosis in crop plants. Annu. Rev. Plant Biol. 64, 71–88 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    Walsh, B. & Lynch, M. in Evolution and Selection of Quantitative Traits: I. Foundations (in the press); http://nitro.biosci.arizona.edu/zbook/NewVolume_2/pdf/WLChapter17.pdf

  41. 41.

    Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet. 14, 483–495 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Li, X. et al. Genic and nongenic contributions to natural variation of quantitative traits in maize. Genome Res. 22, 2436–2444 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Li, Y. et al. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J. 86, 391–402 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    Visscher, P. M. & Posthuma, D. Statistical power to detect genetic loci affecting environmental sensitivity. Behav. Genet. 40, 728–733 (2010).

    Article  Google Scholar 

  45. 45.

    Lynch, M. & Walsh, B. in Evolution and Selection of Quantitative Traits: II. Advanced Topics in Breeding and Evolution (in the press); http://nitro.biosci.arizona.edu/zbook/NewVolume_2/pdf/Chapter44.pdf

  46. 46.

    Heslot, N., Akdemir, D., Sorrells, M. E. & Jannink, J.-L. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor. Appl. Genet. 127, 463–80 (2014).

    Article  Google Scholar 

  47. 47.

    Jarquín, D. et al. A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor. Appl. Genet. 127, 595–607 (2014).

    Article  Google Scholar 

  48. 48.

    Brumpton, R. J., Boughey, H. & Jinks, J. L. Joint selection for both extremes of mean performance and of sensitivity to a macroenvironmental variable: I. Family selection. Heredity 38, 219–226 (1977).

    Article  Google Scholar 

  49. 49.

    Jinks, J. L., Jayasekara, E. M. & Boughey, H. Joint selection for both extremes of mean performance and of sensitivity to a macroenvironmental variable: II. Single seed descent. Heredity 39, 345–355 (1977).

    Article  Google Scholar 

  50. 50.

    Scheiner, S. M. & Lyman, R. F. The genetics of phenotypic plasticity: II. Response to selection. J. Evol. Biol. 4, 51–68 (1991).

    Article  Google Scholar 

  51. 51.

    Covarrubias-Pazaran, G. Genome-Assisted prediction of quantitative traits using the R package sommer. PLoS ONE https://doi.org/10.1371/journal.pone.0156744 (2016).

    Article  Google Scholar 

  52. 52.

    Endelman, J. B. & Jannink, J.-L. Shrinkage estimation of the realized relationship matrix. G3 (Bethesda) 2, 1405–1413 (2012).

    Article  Google Scholar 

  53. 53.

    Bradbury, P. J. et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).

    CAS  Article  Google Scholar 

  54. 54.

    Wen, T. J. & Schnable, P. S. Analysis of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am. J. Bot. 81, 833–842 (1994).

    Article  Google Scholar 

  55. 55.

    Li, S. & Chou, H. H. Lucy2: an interactive DNA sequence quality trimming and vector removal tool. Bioinformatics 20, 2865–2866 (2004).

    CAS  Article  Google Scholar 

  56. 56.

    Ewing, B. & Green, P. Base-calling of automated sequencer traces using Phred: II. Error probabilities. Genome Res. 8, 186–194 (1998).

    CAS  Article  Google Scholar 

  57. 57.

    Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using Phred: I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

    CAS  Article  Google Scholar 

  58. 58.

    Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010).

    CAS  Article  Google Scholar 

  59. 59.

    Gore, M. A. et al. A first-generation haplotype map of maize. Science 326, 1115–1117 (2009).

    CAS  Article  Google Scholar 

  60. 60.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  Article  Google Scholar 

  61. 61.

    Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    Article  Google Scholar 

  62. 62.

    Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–9 (2010).

    CAS  Article  Google Scholar 

  63. 63.

    Speed, D. & Balding, D. J. MultiBLUP: improved SNP-based prediction for complex traits. Genome Res. 24, 1550–1557 (2014).

    CAS  Article  Google Scholar 

  64. 64.

    Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).

  66. 66.

    Eddelbuettel, D. & Francois, R. Rcpp: Seamless R and C++ integration. J. Stat. Softw. 40, 1–18 (2011).

    Google Scholar 

  67. 67.

    Bates, D. & Eddelbuettel, D. Fast and elegant numerical linear algebra using the RcppEigen package. J. Stat. Softw. 52, 1–24 (2013).

    Article  Google Scholar 

  68. 68.

    Allaire, J. et al. RcppParallel: Parallel Programming Tools for ‘Rcpp’ (CRAN, 2016); https://cran.r-rproject.org/web/packages/RcppParallel/RcppParallel.pdf.

  69. 69.

    Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    CAS  Article  Google Scholar 

  70. 70.

    Storey, J. D., Bass, A. J., Dabney, A. & Robinson, D. qvalue: q-value estimation for false discovery rate control (GitHub, 2015); at http://github.com/jdstorey/qvalue.

  71. 71.

    Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1003118 (2013).

    CAS  Article  Google Scholar 

  72. 72.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Am. Assoc. Cancer Res. Educ. B 13, 2498–2504 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Panzea group for making their genotypic and phenotypic data on the US-NAM population publically available, W. Wu for conducting the RNA-Seq experiments, C.-T. ‘Eddy’ Yeh for SNP calling and J. Yang for preparing the imputed SNPs. We also thank anonymous reviewers for helpful comments. This material is based upon work supported in part by the National Science Foundation (grant number 1027527) and the National Institute of General Medical Sciences of the National Institutes of Health (grant number 1R01GM109458-01) to P.S.S. and D.N. and to D.N., respectively. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Affiliations

Authors

Contributions

A.K., S.S. and P.S.S. conceived the study. S.S. contributed to data collection and quality control. A.K. analysed the data and interpreted the results. D.N. provided guidance with statistical analyses. A.K. and P.S.S. wrote the manuscript.

Corresponding author

Correspondence to Patrick S. Schnable.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figure 1–6, Supplementary Table 1, Supplementary References.

Life Sciences Reporting Summary

Supplementary Table 2

Significant SNPs for the mean phenotype, linear plasticity, and non-linear plasticity of 23 phenotypes with their estimated effect sizes, standard errors, p-values and q-values.

Supplementary Table 3

Candidate genes for the mean phenotype, linear plasticity, and non-linear plasticity of 23 phenotypes with their genomic locations and associated SNPs.

Supplementary Table 4

Enriched GO terms from the biological process sub-ontology for candidate genes grouped by mean phenotype, linear plasticity, and non-linear plasticity.

Supplementary Table 5

Enriched GO terms from the cellular component sub-ontology for candidate genes grouped by mean phenotype, linear plasticity, and non-linear plasticity.

Supplementary Table 6

Enriched GO terms from the molecular function sub-ontology for candidate genes grouped by mean phenotype, linear plasticity, and non-linear plasticity.

Supplementary Table 7

Enriched GO terms from the biological process sub-ontology for the protein products of candidate genes and their primary predicted interaction partners for the mean phenotype, linear plasticity, and non-linear plasticity of 23 phenotypes.

Supplementary Table 8

Enriched GO terms from the cellular component sub-ontology for the protein products of candidate genes and their primary predicted interaction partners for the mean phenotype, linear plasticity, and non-linear plasticity of 23 phenotypes.

Supplementary Table 9

Enriched GO terms from the molecular function sub-ontology for the protein products of candidate genes and their primary predicted interaction partners for the mean phenotype, linear plasticity, and non-linear plasticity of 23 phenotypes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kusmec, A., Srinivasan, S., Nettleton, D. et al. Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nature Plants 3, 715–723 (2017). https://doi.org/10.1038/s41477-017-0007-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing