Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The R-loop is a common chromatin feature of the Arabidopsis genome

Abstract

R-loops are functional structures in chromatin comprising one single-stranded DNA and a DNA:RNA hybrid. Here, we report ssDRIP-seq, a single-strand DNA ligation-based library preparation technique for genome-wide identification of R-loops. When applied in Arabidopsis, ssDRIP-seq exhibits high efficiency, low bias and strand specificity. We found that Arabidopsis R-loops are enriched by both AT and GC skews, and are formed in the sense and antisense orientations. R-loops are strongly enriched in gene promoters and gene bodies, and are highly associated with noncoding RNA and repetitive genomic regions. Furthermore, R-loops are negatively correlated with CG DNA hypermethylation, and are prevalent in regions with multiple chromatin modifications, showing strong correlations with the activated and repressed gene loci. Our analyses indicate that R-loops are common features in the Arabidopsis genome and suggest that the R-loops play diverse roles in genome organization and gene regulation, thereby providing insights into plant nuclear genome formation and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome-wide detection of R-loops in Arabidopsis by ssDRIP-seq.
Fig. 2: Antisense R-loops are highly enriched in the Arabidopsis genome.
Fig. 3: R-loops are enriched in both GC and AT skew regions and are anticorrelated with DNA hypermethylation.
Fig. 4: Preferential formation of R-loops in regions with various histone modifications.
Fig. 5: R-loops are strongly associated with plant-specific Pol IV and V transcription and TEs, noncoding regions and repetitive regions.

Similar content being viewed by others

References

  1. Shaw, N. N. & Arya, D. P. Recognition of the unique structure of DNA:RNA hybrids. Biochimie 90, 1026–1039 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Skourti-Stathaki, K. & Proudfoot, N. J. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 28, 1384–1396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Santos-Pereira, J. M. & Aguilera, A. R loops: new modulators of genome dynamics and function. Nat. Rev. Genet. 16, 583–597 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Chedin, F. Nascent connections: R-loops and chromatin patterning. Trends Genet. 32, 828–838 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Gaillard, H. & Aguilera, A. Transcription as a threat to genome integrity. Annu. Rev. Biochem. 85, 291–317 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Boguslawski, S. J. et al. Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids. J. Immunol. Methods 89, 123–130 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Ginno, P. A., Lott, P. L., Christensen, H. C., Korf, I. & Chedin, F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ginno, P. A., Lim, Y. W., Lott, P. L., Korf, I. & Chedin, F. GC skew at the 5' and 3' ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res. 23, 1590–1600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan, Y. A. et al. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet. 10, e1004288 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. El Hage, A., Webb, S., Kerr, A. & Tollervey, D. Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet. 10, e1004716 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nadel, J. et al. RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships. Epigenetics Chromatin 8, 46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wahba, L., Costantino, L., Tan, F. J., Zimmer, A. & Koshland, D. S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev. 30, 1327–1338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanz, L. A. et al. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, Q., Csorba, T., Skourti-Stathaki, K., Proudfoot, N. J. & Dean, C. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340, 619–621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bailey, T. L. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27, 1653–1659 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hetzel, J., Duttke, S. H., Benner, C. & Chory, J. Nascent RNA sequencing reveals distinct features in plant transcription. Proc. Natl Acad. Sci. USA 113, 12316–12321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lim, Y. W., Sanz, L. A., Xu, X., Hartono, S. R. & Chedin, F. Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutieres syndrome. eL ife 4, e08007 (2015).

  21. Matzke, M. A., Kanno, T. & Matzke, A. J. RNA-Directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu. Rev. Plant Biol. 66, 243–267 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Shafiq, S. et al. DNA topoisomerase 1 prevents R-loop accumulation to modulate auxin-regulated root development in rice. Mol. Plant 10, 821–833 (2017).

  23. Bagchi, D. N. & Iyer, V. R. The determinants of directionality in transcriptional initiation. Trends Genet. 32, 322–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, X. & Sharp, P. A. Divergent transcription: a driving force for new gene origination? Cell 155, 990–996 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mellor, J., Woloszczuk, R. & Howe, F. S. The interleaved genome. Trends Genet. 32, 57–71 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Skourti-Stathaki, K., Proudfoot, N. J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Skourti-Stathaki, K., Kamieniarz-Gdula, K. & Proudfoot, N. J. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516, 436–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pontes, O. et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126, 79–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wendte, J. M. & Pikaard, C. S. The RNAs of RNA-directed DNA methylation. Biochim. Biophys. Acta 1860, 140–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Nakama, M., Kawakami, K., Kajitani, T., Urano, T. & Murakami, Y. DNA-RNA hybrid formation mediates RNAi-directed heterochromatin formation. Genes Cells 17, 218–233 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Lahmy, S. et al. Evidence for ARGONAUTE4-DNA interactions in RNA-directed DNA methylation in plants. Genes Dev. 30, 2565–2570 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haag, J. R. et al. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol. Cell 48, 811–818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi, Y. & Berg, J. M. Specific DNA-RNA hybrid binding by zinc finger proteins. Science 268, 282–284 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, Y. et al. SAC3B, a central component of the mRNA export complex TREX-2, is required for prevention of epigenetic gene silencing in Arabidopsis. Nucleic Acids Res. 45, 181–197 (2017).

    Article  PubMed  Google Scholar 

  40. Jenjaroenpun, P., Wongsurawat, T., Sutheeworapong, S. & Kuznetsov, V. A. R-loopDB: a database for R-loop forming sequences (RLFS) and R-loops. Nucleic Acids Res. 45, D119–D127 (2017).

    Article  PubMed  Google Scholar 

  41. Stroud, H., Greenberg, M. V., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luo, C. et al. Integrative analysis of chromatin states in Arabidopsis identified potential regulatory mechanisms for natural antisense transcript production. Plant J. 73, 77–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Gruntman, E. et al. Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinformatics 9, 371 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Sun and Yang labs for the useful discussion and suggestions, and we appreciate F. Chédin for sharing the detailed DRIP-seq protocol. We also appreciate the suggestions from three anonymous reviewers for improving the quality of this manuscript. This work was supported by grants from the National Key R&D Program (2016YFA0500800 to the Sun Lab), the National Natural Science Foundation of China (91540109 and 31671381 to X.Y.), the Tsinghua University Initiative Scientific Research Program (to the Sun Lab), the Tsinghua-Peking Joint Center for Life Sciences and the 1000 Young Talent Program of China (to Q.S. and X.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Q.S. initiated the project, and supervised the data analysis together with X.Y.; Q.S. and W.X. developed the ssDRIP-seq method and W.X. performed all experiments; W.X., H.X., K.L., Y.L. and Y.F. analysed the data; W.X., H.X., X.Y. and Q.S. prepared the figures with help from K.L. and Y.L.; and Q.S. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Xuerui Yang or Qianwen Sun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–11

Life Sciences Reporting Summary

Supplementary Table 1

Arabidopsis public data used in this study.

Supplementary Table 2

Information for software used in this study.

Supplementary Table 3

Detailed information of R-loop peaks and their overlap with various genome features.

Supplementary Table 4

Information for primers used in this study.

Supplementary Dataset 1

Identified R-loop motifs by HOMER. The files include HOMER Known Motif Enrichment Results, forward peak motifs, reverse peak motifs, and unstranded peak motifs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Xu, H., Li, K. et al. The R-loop is a common chromatin feature of the Arabidopsis genome. Nature Plants 3, 704–714 (2017). https://doi.org/10.1038/s41477-017-0004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0004-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing